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1 0 0
0 1 0
Set e; = 0 ,€ = 0 5 ,ep = 0 in R".
0 0 1
The vectors ey, ..., e, are called the standard basis for R".

Note that span{ej,...,e,} = R", since

a 1 0 0

an 0 1 0

| =a- || +a ||+ Fan || =ae1+axe3+ -+ ane,,
an 0 0 1
for all a1,a,...,a, € R.
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Properties of the standard basis

(i) No vector in the standard basis can be written as a linear
combination of the remaining standard basis vectors.

Equivalently:
e & span{ey,...,€_1,€i11,...,€,},

for all < i < n.

(ii) If we have a linear combination

Aier + ex + -+ A\e, =0,

then A1 =X =--- =)\, =0.
(iii) Any vector in R" = span{ey,...,e,} can be written uniquely as a
linear combination of ey, ..., e,.

In other words: If
aie; + -+ ape, :61e1+"‘+6nem

Then: a3 = B1,...,an = Ba.
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Theorem

Very Important Theorem. Let vy, ..., v, be vectors in R” and let A
denote the n X r matrix A= [v; vo -+ v,]. Write
U :=span{vi, ..., v,} The following equivalent conditions are equivalent::

(i) No vector in the list can be written as a linear combination of the
remaining vectors in the list.

(i) If we remove a v;, the resulting vectors do not span U.

(iii) If we have a linear combination

Avi+Aova + -+ Ay, =0,

then Ay =X =--- =)\, =0.
(iv) Any vector in span{vy,...,v,} can be written uniquely as a linear
combination of vy,...,Vv,.

(v) The system of equations A - X = 0 has only the 0 solution.
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Definition

Important Definition:

Vectors v, ..., v, in R” are said to be linearly independent if any of the
four equivalent conditions in the theorem above hold.
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Example 1: ej, ey, ..., e, are linearly independent.
1 1 0
Example 2: The vectors vi = |1| ,vo = [0| ,v3 = |1| are linearly
0 1 1
independent.

We must show that for A = [v; v» v3], the system A - X = 0 has only the
zero solution.

11 0]0 1 1 0/0
Solution: [1 0 10| =R 1o —1 110

01 1/0 0 1 1]0

0 1 10 010 1 00]0
Rothi, 1 1]o0] 2 0o 1 —1lo] B 0o 1 o]0,
Reths 1o 0 200l 2R Jo 0 1|0 00 1|0

which shows that the system A - X = 0 has a unique solution.Therefore,
the vectors vy, vo, v3 are linearly independent.
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Class Example

Show that the vectors v; = are linearly

o~ O
5
I

= o = O
.
|

o == O

independent.

Solution: For A = [v; v» v3], we check A-X =0 has only 0 as a solution.

1 0 00 1 0 0|0 1 0 00
01 1|0 -rR+mrR, [0 1 1 |0| —-mR+RrR |0 1 010
1 0 1/0| —rR+Rr, [0 O 1 |O R3+Ry 0 0 1|0/|’
01 0|0 0 0 —-1]0 0 0 0|0

which shows that the systems A - X = 0 has only 0 as a solution.

Thus vy, ..., v, are linearly independent.
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Definition

Vectors v, ..., v, € R" are linearly dependent if they are not linearly
independent.

In particular: Vectors vy, ..., v, are linearly dependent if one of the
following equivalent conditions hold:

(i) Some v; is in the span of vi,...,Vi_1,Vit1,---, V.

(ii) There exists a non-trivial dependence relation:
Avi+ -+ Av, =0

with NOT all \; = 0.
(iii) For A=[v1 --- v;], there is a non-zero solution to A- X = 0.

Observation: Suppose A\1vi + Aavo + A3vz3 = 0, with say, A, # 0. Then
—A2v2 = A1vi + Azvs,

SO Vo = _%Vl + —:\\—jV3.This shows how a dependence relation among the
vectors v; leads to expressing one of the vectors in terms of the others.
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1 1 3
The vectors vy = |1| ,vo = |2]| ,v3 = |4]| are linearly dependent.
2 1 5

Find a dependence relation among them and use it to express one of the
vectors as a linear combination of the remaining vectors.

Solution:If the vectors are not linearly independent, then there is a
non-zero solution to the system AX = 0, where A =[v; v» v3].

1 1 3]0 1 1 3]0 1 0 210

1 2 4o =200 1 1 |o] B 00 1 10

2 1 5/0] R o -1 —1)0] ®® Jo 0 o]0
We can write the solution to the homogeneous system as

X -2t -2

yl=|—-t|=t-]|-1].

z t 1
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Example continued

This shows that —2 - v; + (—=1) - vo + v3 = 0.Thus, v3 =2 v + v,.

1 1 3
CHECK: 2-vi +w =2 |1| + |2| = |4]|, as required.
2 1 5
-2
Since any multiple of [—1| is also a solution, any such multiple gives a
1
dependence relation on vy, v», v3. For example, taking t = —3, we get
6
that | 3 | is a solution, sothat 6-v; +3-w —3-v3 =0.
-3

Thus there are infinitely many dependence relations among v, vo, v3.

But in this case, just one way to write v3 as a linear combination of v,
and vs.
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Class Example

Determine whether or not the vectors
4 1 0

vi=|—-1|,vo=1| 0 |,v3s= [—1]| are linearly independent or linearly
-3 -1 1

dependent. If they are linearly dependent, express one of the vectors as a

linear combination of the remaining vectors.

Solution: We take A = [v; v2 v3]. If the only solution to A- X =0is 0,
the vectors are linearly independent.

If A-X =0 has a non-zero solution, the vectors are linearly dependent,
and any non-zero solution gives a dependence relation.
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Class Example continued

4 1 010 -1 0 -1]0
1 0 -—1]o| B2yl 1 0|0
3 -1 110 3 -1 110

1
—4
0

4-Ri+R
—3-Ri+R3

—_
|
N
o O o
O O

0 0
1 0
0 0
X _
Thus, the solution to the homogeneous system is |y | = | 4t |, which
z t

shows that vy, v», v3 are linearly dependent.
Taking t = 1 yields the dependence relation —v; + 4v, + vz = 0.

Thus,
vi = 4v + v3.
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Class Example continued

CHECK:
1 0 4 0 4
dvo+v3=4-|0 |+ |-1| =0 |+ |-1| =|-1],
-1 1 —4 1 -3
as required.
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Important Definition: Let U C R” be a subspace of R". Vectors
Vi,...,Vv, € U are a basis for U if:

(i) U=span{v,..., v }.

(ii) The vectors vq,..., Vv, are linearly independent.

In particular: A basis for R” is a collection of linearly independent vectors
that span R".

Moreover: If vi,...,v, is a basis for R”, then: Every vector in R"” can be
written *uniquely* as a linear combination of vy, ..., v,.
Examples: (i) The standard basis ey, e, ..., e, is a basis for R".

(i) The basic solutions to a homogeneous system of linear equations
form a basis for the solution space of that system.

(iii) If X is an eigenvalue for the matrix A, then the basic A-eigenvectors
form a basis for E), the eigenspace of \.
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Example

Find a basis for the subspace of R3 that is the solution space to the
homogeneous equation:

2x —4y + 10z = 0.

Note that this solution space is a plane through the origin in R3.

Solution: x =2y — 5z. Thus, in vector form, the solutions are given by

X [2s — 5t 2 -5
y| = s =s-|1{+t-|0
z |t 0 1
2 [—5
Thus vi = [1] and v» | 0 | are basic solutions.
0 1
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Example continued

To see that the basic solutions are in fact a basis for the solution space,
note that the vector equation shows that the basic solutionss span the
solution space.

In addition, if a1 - vi +as - vu» = 0, then:

O 2 -5 20[1 - 50[2
Ol =a- [1| +an- 0 = aq )
0 0 1 (%)

which gives: a; = ap = 0.

Thus vq, v, are linearly independent and therefore form a basis for the
solutions space, or equivalently, a basis for the given plane through the
origin.
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Class Example

2 2 0
The matrix A= |0 —1 0 has 2 as an eigenvalue of multiplicity two.
0 0 2

Find a basis for the eigenspace E,.

Solution: We find the solutions to the homogeneous system having

0 -2 0
2k —A= 1[0 1 0] as its coefficient matrix.
0 0 O
010
This matrix clearly reduces to [0 0 0]. For such a homogeneous
0 0 0
system, y = 0, while x and z are free variables. Thus the solutions are:
X s 1 0
y|l =10 =s- (0] +t-]|0
z t 0 1
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Class Example continued

Thus, the basic solutions to the homogeneous system with coefficient

1 0
matrix 2/3 — A are: [0| and |0], which in turn form a basis for the
0 1

eigenspace E;.
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Comment

Very Important Fact. Suppose the subspace U of R” is spanned by the

vectors vi, ..., V,. Then there exists a subset of vy, ..., v, forming a
basis of U.
Why: Suppose U = span{vy, vo, v3, va}. If vi,..., v4 are linearly

independent, they form a basis for U.

Otherwise of one the vectors is in the span of the remaining ones: say,
Vo = avy + bvz + cvs.

Suppose u € U. . We can write

u=pvi+qva+rvs+svy=pv+qg(avs + bvs + cvs) + rvs + svy

=(p+aq)vi + (gb+ r)vs + (gc + s)v4.
Thus, u € span{vy, v3, va}.Thus: U = span{vy, v3, s }.

If v1, va, v4 are linearly independent, they form a basis for U. Otherwise,
we may eliminate another vector and continue the process until we have
a linearly independent spanning set for U - , that is, a basis for U.
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Fundamental Theorem

Let vq,...,V, be vectors in R" that span the subspace U and suppose
wi,...,w; € U are linearly independent. Then:
(i) t<r.

(i) Any two bases for U have the same number of elements.

The dimension of U is the number of elements in any basis of U.

Corollary. The dimension of R” equals n.

WHY: e1, e, ...,e, forms a basis for R".
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