Lecture 17: Linear Independence, Bases and Dimension

Set
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \text{ in } \mathbb{R}^n.$$

The vectors $\mathbf{e}_1, \dots, \mathbf{e}_n$ are called the standard basis for \mathbb{R}^n .

Note that span $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}=\mathbb{R}^n$, since

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = a_1 \cdot \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + a_2 \cdot \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \cdots + a_n \cdot \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_3 + \cdots + a_n \mathbf{e}_n,$$

for all $a_1, a_2, \ldots, a_n \in \mathbb{R}$.

Properties of the standard basis

(i) No vector in the standard basis can be written as a linear combination of the remaining standard basis vectors.

Equivalently:

$$\mathbf{e}_i \not\in \operatorname{span}\{\mathbf{e}_1,\ldots,\mathbf{e}_{i-1},\mathbf{e}_{i+1},\ldots,\mathbf{e}_n\},$$

for all < i < n.

(ii) If we have a linear combination

$$\lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \cdots + \lambda_n \mathbf{e}_n = \mathbf{0},$$

then $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.

(iii) Any vector in $\mathbb{R}^n = \text{span}\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ can be written **uniquely** as a linear combination of $\mathbf{e}_1, \dots, \mathbf{e}_n$.

In other words: If

$$\alpha_1 \mathbf{e}_1 + \cdots + \alpha_n \mathbf{e}_n = \beta_1 \mathbf{e}_1 + \cdots + \beta_n \mathbf{e}_n$$

Then: $\alpha_1 = \beta_1, \dots, \alpha_n = \beta_n$.

Theorem

Very Important Theorem. Let v_1, \ldots, v_r be vectors in \mathbb{R}^n and let A denote the $n \times r$ matrix $A = [v_1 \ v_2 \ \cdots \ v_r]$. Write $U := \operatorname{span}\{v_1, \ldots, v_r\}$ The following equivalent conditions are equivalent::

- (i) No vector in the list can be written as a linear combination of the remaining vectors in the list.
- (ii) If we remove a v_i , the resulting vectors do not span U.
- (iii) If we have a linear combination

$$\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_r v_r = \mathbf{0},$$

then $\lambda_1 = \lambda_2 = \cdots = \lambda_r = 0$.

- (iv) Any vector in span $\{v_1, \ldots, v_r\}$ can be written **uniquely** as a linear combination of v_1, \ldots, v_r .
- (v) The system of equations $A \cdot X = \mathbf{0}$ has only the 0 solution.

Important Definition:

Vectors v_1, \ldots, v_r in \mathbb{R}^n are said to be linearly independent if any of the four equivalent conditions in the theorem above hold.

Examples

Example 1: $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ are linearly independent.

Example 2: The vectors
$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ are linearly independent.

We must show that for $A = [v_1 \ v_2 \ v_3]$, the system $A \cdot X = \mathbf{0}$ has only the zero solution.

$$\mbox{Solution:} \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 1 & 0 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{-R_1 + R_2} \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 0 & -1 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix}$$

$$\frac{R_2 + R_1}{R_2 + R_3} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \xrightarrow{\begin{array}{c} -1 \cdot R_2 \\ \frac{1}{2} \cdot R_3 \end{array}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

which shows that the system $A \cdot X = \mathbf{0}$ has a unique solution. Therefore, the vectors v_1, v_2, v_3 are linearly independent.

Class Example

Show that the vectors
$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ are linearly

independent.

Solution: For $A = [v_1 \ v_2 \ v_3]$, we check $A \cdot X = \mathbf{0}$ has only $\mathbf{0}$ as a solution.

$$\begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 1 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & | & 0 \end{bmatrix} \xrightarrow[-R_1 + R_4]{-R_1 + R_3} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & -1 & | & 0 \end{bmatrix} \xrightarrow[-R_3 + R_4]{-R_3 + R_4} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix},$$

which shows that the systems $A \cdot X = \mathbf{0}$ has only $\mathbf{0}$ as a solution.

Thus v_1, \ldots, v_r are linearly independent.

Vectors $v_1, \ldots, v_r \in \mathbb{R}^n$ are linearly dependent if they are not linearly independent.

In particular: Vectors v_1, \ldots, v_r are linearly dependent if one of the following equivalent conditions hold:

- (i) Some v_i is in the span of $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_r$.
- (ii) There exists a non-trivial dependence relation:

$$\lambda_1 v_1 + \cdots + \lambda_r v_r = \mathbf{0}$$

with NOT all $\lambda_i = 0$.

(iii) For $A = [v_1 \cdots v_r]$, there is a non-zero solution to $A \cdot X = \mathbf{0}$.

Observation: Suppose $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = \mathbf{0}$, with say, $\lambda_2 \neq 0$. Then

$$-\lambda_2 v_2 = \lambda_1 v_1 + \lambda_3 v_3,$$

so $v_2 = -\frac{\lambda_1}{\lambda_2}v_1 + -\frac{\lambda_3}{\lambda_1}v_3$. This shows how a dependence relation among the vectors v_i leads to expressing one of the vectors in terms of the others.

Example

The vectors
$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$ are linearly **dependent**.

Find a dependence relation among them and use it to express one of the vectors as a linear combination of the remaining vectors.

Solution:If the vectors are not linearly independent, then there is a non-zero solution to the system $AX = \mathbf{0}$, where $A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$.

$$\begin{bmatrix} 1 & 1 & 3 & 0 \\ 1 & 2 & 4 & 0 \\ 2 & 1 & 5 & 0 \end{bmatrix} \xrightarrow{-R_1 + R_2} \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 \end{bmatrix} \xrightarrow{R_2 + R_3} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

We can write the solution to the homogeneous system as

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2t \\ -t \\ t \end{bmatrix} = t \cdot \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}.$$

Example continued

This shows that $-2 \cdot v_1 + (-1) \cdot v_2 + v_3 = \mathbf{0}$. Thus, $v_3 = 2 \cdot v_1 + v_2$.

CHECK:
$$2 \cdot v_1 + v_2 = 2 \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$
, as required.

Since any multiple of $\begin{bmatrix} -2\\-1\\1 \end{bmatrix}$ is also a solution, any such multiple gives a

dependence relation on v_1, v_2, v_3 . For example, taking t = -3, we get

that
$$\begin{bmatrix} 6 \\ 3 \\ -3 \end{bmatrix}$$
 is a solution, so that $6 \cdot v_1 + 3 \cdot v_2 - 3 \cdot v_3 = \mathbf{0}$.

Thus there are infinitely many dependence relations among v_1, v_2, v_3 .

But in this case, just one way to write v_3 as a linear combination of v_1 and v_2 .

Class Example

Determine whether or not the vectors

$$v_1 = \begin{bmatrix} 4 \\ -1 \\ -3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$
 are linearly independent or linearly dependent, express one of the vectors as a

dependent. If they are linearly dependent, express one of the vectors as a linear combination of the remaining vectors.

Solution: We take $A = [v_1 \ v_2 \ v_3]$. If the only solution to $A \cdot X = \mathbf{0}$ is $\mathbf{0}$, the vectors are linearly independent.

If $A \cdot X = \mathbf{0}$ has a non-zero solution, the vectors are linearly dependent, and any non-zero solution gives a dependence relation.

Class Example continued

$$\begin{bmatrix} 4 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ -3 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -1 & 0 & -1 & 0 \\ 4 & 1 & 0 & 0 \\ -3 & -1 & 1 & 0 \end{bmatrix}$$

$$\xrightarrow{ \begin{array}{c|cccc} 4 \cdot R_1 + R_2 \\ \hline -3 \cdot R_1 + R_3 \end{array}} \begin{bmatrix} -1 & 0 & -1 & 0 \\ 0 & 1 & -4 & 0 \\ 0 & -1 & 4 & 0 \end{bmatrix} \xrightarrow{ \begin{array}{c|cccc} -1 \cdot R_1 \\ \hline R_2 + R_3 \end{array}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} .$$

Thus, the solution to the homogeneous system is $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -t \\ 4t \\ t \end{bmatrix}$, which

shows that v_1, v_2, v_3 are linearly dependent.

Taking t=1 yields the dependence relation $-v_1+4v_2+v_3=\mathbf{0}$.

Thus,

$$v_1 = 4v_2 + v_3$$

Class Example continued

CHECK:

$$4v_2+v_3=4\cdot\begin{bmatrix}1\\0\\-1\end{bmatrix}+\begin{bmatrix}0\\-1\\1\end{bmatrix}=\begin{bmatrix}4\\0\\-4\end{bmatrix}+\begin{bmatrix}0\\-1\\1\end{bmatrix}=\begin{bmatrix}4\\-1\\-3\end{bmatrix},$$

as required.

Important Definition: Let $U \subseteq \mathbb{R}^n$ be a subspace of \mathbb{R}^n . Vectors $v_1, \ldots, v_r \in U$ are a basis for U if:

- (i) $U = \text{span}\{v_1, ..., v_r\}.$
- (ii) The vectors v_1, \ldots, v_r are linearly independent.

In particular: A basis for \mathbb{R}^n is a collection of linearly independent vectors that span \mathbb{R}^n .

Moreover: If v_1, \ldots, v_n is a basis for \mathbb{R}^n , then: Every vector in \mathbb{R}^n can be written *uniquely* as a linear combination of v_1, \ldots, v_n .

Examples: (i) The standard basis $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ is a basis for \mathbb{R}^n .

- (ii) The basic solutions to a homogeneous system of linear equations form a basis for the solution space of that system.
- (iii) If λ is an eigenvalue for the matrix A, then the basic λ -eigenvectors form a basis for E_{λ} , the eigenspace of λ .

Example

Find a basis for the subspace of \mathbb{R}^3 that is the solution space to the homogeneous equation:

$$2x - 4y + 10z = 0$$
.

Note that this solution space is a plane through the origin in \mathbb{R}^3 .

Solution: x = 2y - 5z. Thus, in vector form, the solutions are given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2s - 5t \\ s \\ t \end{bmatrix} = s \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}.$$

Thus
$$v_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
 and $v_2 \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}$ are basic solutions.

Example continued

To see that the basic solutions are in fact a basis for the solution space, note that the vector equation shows that the basic solutionss span the solution space.

In addition, if $\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 = \mathbf{0}$, then:

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \alpha \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \alpha_2 \cdot \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2\alpha_1 - 5\alpha_2 \\ \alpha_1 \\ \alpha_2 \end{bmatrix},$$

which gives: $\alpha_1 = \alpha_2 = 0$.

Thus v_1, v_2 are linearly independent and therefore form a basis for the solutions space, or equivalently, a basis for the given plane through the origin.

Class Example

The matrix
$$A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 has 2 as an eigenvalue of multiplicity two.

Find a basis for the eigenspace E_2 .

Solution: We find the solutions to the homogeneous system having

$$2I_3 - A = \begin{bmatrix} 0 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 as its coefficient matrix.

This matrix clearly reduces to $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$ For such a homogeneous

system, y = 0, while x and z are free variables. Thus the solutions are:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} s \\ 0 \\ t \end{bmatrix} = s \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Class Example continued

Thus, the basic solutions to the homogeneous system with coefficient matrix $2I_3 - A$ are: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, which in turn form a basis for the eigenspace E_2 .

Comment

Very Important Fact. Suppose the subspace U of \mathbb{R}^n is spanned by the vectors v_1, \ldots, v_r . Then there exists a subset of v_1, \ldots, v_r forming a basis of U.

Why: Suppose $U = \text{span}\{v_1, v_2, v_3, v_4\}$. If v_1, \dots, v_4 are linearly independent, they form a basis for U.

Otherwise of one the vectors is in the span of the remaining ones: say, $v_2 = av_1 + bv_3 + cv_4$.

Suppose $u \in U$. We can write

$$u = pv_1 + qv_2 + rv_3 + sv_4 = pv_1 + q(av_1 + bv_3 + cv_4) + rv_3 + sv_4$$

$$= (p + aq)v_1 + (qb + r)v_3 + (qc + s)v_4.$$

Thus, $u \in \text{span}\{v_1, v_3, v_4\}$. Thus: $U = \text{span}\{v_1, v_3, v_4\}$.

If v_1, v_3, v_4 are linearly independent, they form a basis for U. Otherwise, we may eliminate another vector and continue the process until we have a linearly independent spanning set for U - , that is, a basis for U.

Fundamental Theorem

Let v_1, \ldots, v_r be vectors in \mathbb{R}^n that span the subspace U and suppose $w_1, \ldots, w_t \in U$ are linearly independent. Then:

- (i) $t \leq r$.
- (ii) Any two bases for U have the same number of elements.

The **dimension** of U is the number of elements in any basis of U.

Corollary. The dimension of \mathbb{R}^n equals n.

WHY: $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ forms a basis for \mathbb{R}^n .