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Examples of subspaces of Euclidean Space

Recall that Euclidean n-space, denoted Rn, is the set of all n-tuples of
real numbers of length n. Such vectors can be written either as row

vectors (a1, a2, . . . , an) or column vectors


a1
a2
...
an

.

We add and scalar multiple coordinate wise:Thus,

2 ·

1
2
3

+ 5 ·

4
5
6

 =

2
4
6

+

20
25
30

 =

22
29
36

 .
Recall that if v1, . . . vr ∈ Rn and λ1, . . . , λr ∈ R, then

λ1v1 + λ2v2 + · · ·+ λrvr

is a linear combination of v1, . . . , vr .
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Examples of subspaces of Euclidean Space

1. Let

a11x1 + · · ·+ a1nxn = 0

... =
...

am1 + · · ·+ amnxn = 0

be a homogeneous system of m linear equations in n unknowns. Recall
that if v = (s1, . . . , sn) and u = (t1, . . . , tn) are solutions to the system,
then:

(i) (0,. . . , 0) is a solution.

(ii) v + u is a solution.

(iii) λv is a solution, for all λ ∈ R.

In particular : If v1, . . . , vr are solutions, then any linear combination

λ1v1 + · · ·+ λrvr

is a solution to the homogeneous system.
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Examples of subspaces of Euclidean Space

Let A be an m × n matrix. We can think of multiplication by A as a
function from Rn to Rm, since v ∈ Rn implies Av ∈ Rm.

2. Let W denote the nullspace of A, i.e., the set of all v ∈ Rn such that
Av = 0. Then :

(i) 0 ∈W

(ii) If v1, v2 ∈W , then v1 + v2 ∈W , since:

A(v1 + v2) = Av1 + Av2 = 0 + 0 = 0.

(iii) If v ∈W , then λv ∈W , for all λ ∈ R, since:

A(λv) = λAv = λ0 = 0.

In particular: If v1, . . . , vr are in W then any linear combination

λ1v1 + · · ·+ λrvr

is also in W .
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Examples of subspaces of Euclidean Space

3. Let U ⊆ Rm denote the image of A. That is, all vectors in Rm of the
form Av , with v ∈ Rn. Then:

(i) 0 ∈ U, since 0Rm = A · 0Rn .

(ii) If Av1,Av2 are in U, then Av1 + Av2 = A(v1 + v2) is in U.

(iii) If Av is in U, then λ(Av) = A(λv) is in U, for all λ ∈ R.

In particular: If v1, . . . , vr are in U then any linear combination

λ1v1 + · · ·+ λrvr

is also in U.
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Examples of subspaces of Euclidean Space

4. Now assume that A is an n × n matrix and let λ be an eigenvalue.

Let Eλ(A) ⊆ Rn denote the set of all λ-eigenvectors of A, together with
the zero vector 0 of Rn. Eλ(A) is called the eigenspace of λ. Then:

(i) 0 ∈ Eλ(A), by definition.

(ii) If v1, v2 are in Eλ(A), then v1 + v2 is in Eλ(A), since:

A(v1 + v2) = Av1 + Av2 = λv1 + λv2 = λ(v1 + v2).

(iii) If v is in Eλ(A), then γv is in Eλ(A), for all γ ∈ R, since:

A(γv) = γAv = γ(λv) = γλv = λ(γv).

In particular: If v1, . . . , vr are in Eλ(A) then any linear combination

γ1v1 + · · ·+ γrvr

is also in Eλ(A).
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Examples of subspaces of Euclidean Space

5. Fix vectors v1, . . . , vr ∈ Rn. The span of v1, . . . , vr is the set of all
linear combinations of v1, . . . , vr .

Let S denote the span of the vectors v1, . . . , vr .

(i) 0 ∈ S , since 0 = 0 · v1 + · · ·+ 0 · vr .
(ii) If v = α1v1 + · · ·+ αrvr ∈ S and u = β1v1 + · · ·+ βrvr ∈ S , then

v + u ∈ S , since:

v + u = (α1v1 + · · ·+ αrvr ) + (β1v1 + · · ·+ βrvr )

= (α1 + β1)v1 + · · ·+ (αr + βr )vr .

(iii) If v = α1v1 + · · ·+ αrvr ∈ S and γ ∈ R, then γv ∈ S , since:

γv = γ(α1v1 + · · ·+ αrvr ∈ S)

= (γα1)v1 + · · ·+ (γαr )vr
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Examples of subspaces of Euclidean Space

In particular: If w1, . . . ,wt are in S then any linear combination

γ1w1 + · · ·+ γtwt

is also in S .

In other words: A linear combination of linear combinations of v1, . . . , vr
is a linear combination of v1, . . . , vr .
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Definition

A subset W ⊆ Rn is called a subspace of Rn if it satisfies the following
properties:

(i) 0 ∈W .

(ii) If v1, v2 ∈W , then v1 + v2 ∈W .

(iii) if v ∈W , then λv ∈W , for all λ ∈ R.

In particular: If v1, . . . , vr are in W then any linear combination

γ1v1 + · · ·+ γrvr

is also in W .

Therefore: The Examples 1-5 above are all subspaces of Rn.
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Example

What are the subspaces of R2?

(i) {0} is a subspace of R2.

(ii) R2 is a subspace of R2.

(iii) Any line through the origin is a subspace of R2.

These are the only subspaces of R2.

Let L be a line in R2 through the origin. L is given by y = mx , where m
is the slope of L.

Thus, L is the solution set of the homogeneous equation x + (−m)y = 0,
which shows that L is a subspace.
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Example

The subspaces of R3 are:

(i) {0}.
(ii) R3.

(iii) Any line through the origin.

(iv) Any plane through the origin.

Why: Each of these sets are the solution set to a homogeneous system of
equations. For example:

(a) Any plane through the origin is defined by an equation of the form:
ax + by + cz = 0, for fixed constants a, b, c ∈ R.

(b) Any line through the origin is the intersection of two planes through
the origin and is thus the solution set to a system of equations of
the form:

ax + by + cz = 0

dx + ey + fz = 0.
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Example

A line or plane in R2 or R3 that does not pass through the origin, is NOT
a subspace. We require subspaces to contain 0.

Another reason: Suppose L : y = mx + b is a line in R2, with b 6= 0. Let

v1 =

[
a

ma + b

]
and v2 =

[
c

mc + b

]
be vectors in L. Then

v1 + v2 =

[
a + c

m(a + c) + 2b

]
, which does not belong to L.
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Definition

Let U ⊆ Rn be a subspace. Vectors v1, . . . , vr ∈ U span U if U is the
subspace spanned by v1, . . . , vr ,

In other words, U is the set of all linear combinations of v1, . . . , vr .

In this case we write U = span{v1, . . . , vr}.

Important Observation: Let A = [v1 v2 · · · vr ] be the n × r matrix
whose columns are v1, . . . , vr . Then:

u ∈ U if and only if u = A ·

λ1...
λr

 ,
since

A ·

λ1...
λr

 = [v1 · · · vr ] ·

λ1...
λr

 = λ1v1 + · · ·+ λrvr .
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Comment

Thus: A vector b ∈ Rn is in the span of v1, . . . , vr if and only if the n × r
system of equations given by

A · X = b

has a solution.

Moreover, if

λ1...
λr

 is a solution, then

b = λ1v1 + · · ·+ λrvr .

Important Consequence: Given any m × n matrix A, the subspace
im(A), the image of A, is the subspace spanned of Rm spanned by the
columns of A.
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Example

Let v1 =

1
0
1

, v2 =

0
1
1

, and v3 =

1
1
0

. Is b =

2
0
1

 in span{v1, v2, v3}?

Solution: Let A = [v1 v2 v3]. We seek a solution to A · X = b. We use
Gaussian elimination.1 0 1 2

0 1 1 0
1 1 0 1

 −1·R1+R3−−−−−−→

1 0 1 2
0 1 1 0
0 1 −1 −1

 −1·R2+R3−−−−−−→

1 0 1 2
0 1 1 0
0 0 −2 −1


− 1

2 ·R3−−−−→

1 0 1 2
0 1 1 0
0 0 1 1

2

 −1·R3+R1−−−−−−→
−1·R3+R2

1 0 0 3
2

0 1 0 − 1
2

0 0 1 1
2

 .
This shows that b = 3

2 · v1 −
1
2 · v2 + 1

2 · v3.,

Thus, b ∈ span{v1, v2, v3}.
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Example continued

CHECK: 3
2 · v1 −

1
2 · v2 + 1

2 · v3 =

3

2
·

1
0
1

− 1

2
·

0
1
1

+
1

2
·

1
1
0

 =

 3
2
0
3
2

−
0

1
2
1
2

+

 1
2
1
2
0

 =

2
0
1

 = b.
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Class Example

Determine if b =

4
3
1

 belongs to span{v1, v2, v3}, for

v1 =

1
2
1

 , v2 =

2
1
1

 , v3 =

1
1
2

 .
If so, write b as a linear combination of v1, v2, v3.

Then, verify your answer.
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Class Example continued

Solution: Using Gaussian Elimination,1 2 1 4
2 1 1 3
1 1 2 1

 −2·R1+R2−−−−−−→
−1·R1+R3

1 2 1 4
0 −3 −1 −5
0 −1 1 −3

 R2↔−R3−−−−−→

1 2 1 4
0 1 −1 3
0 −3 −1 −5


−2·R2+R1−−−−−−→
3·R2+R3

1 0 3 −2
0 1 −1 3
0 0 −4 4

 − 1
4 ·R3−−−−→

1 0 3 −2
0 1 −1 3
0 0 1 −1


−3·R3+R1−−−−−−→
1·R3+R2

1 0 0 1
0 1 0 2
0 0 1 −1


Thus: b = 1 · v1 + 2 · v2 − v3.
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Class Example continued

CHECK: 1 · v1 + 2 · v2 − v3 =

1 ·

1
2
1

+ 2 ·

2
1
1

−
1

1
2

 =

1
2
1

+

4
2
2

−
1

1
2

 =

4
3
1


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