Lecture 15: Subspaces of Euclidean Space and Spanning Sets

Recall that Euclidean *n*-space, denoted \mathbb{R}^n , is the set of all *n*-tuples of real numbers of length *n*. Such vectors can be written either as row

vectors
$$(a_1, a_2, \ldots, a_n)$$
 or column vectors $\begin{vmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{vmatrix}$.

We add and scalar multiple coordinate wise: Thus,

$$2 \cdot \begin{bmatrix} 1\\2\\3 \end{bmatrix} + 5 \cdot \begin{bmatrix} 4\\5\\6 \end{bmatrix} = \begin{bmatrix} 2\\4\\6 \end{bmatrix} + \begin{bmatrix} 20\\25\\30 \end{bmatrix} = \begin{bmatrix} 22\\29\\36 \end{bmatrix}$$

Recall that if $v_1, \ldots v_r \in \mathbb{R}^n$ and $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$, then

$$\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_r v_r$$

is a linear combination of v_1, \ldots, v_r .

1. Let

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\vdots \qquad = \vdots$$

$$a_{m1} + \dots + a_{mn}x_n = 0$$

be a homogeneous system of *m* linear equations in *n* unknowns. Recall that if $v = (s_1, \ldots, s_n)$ and $u = (t_1, \ldots, t_n)$ are solutions to the system, then:

- (i) $(0,\ldots,0)$ is a solution.
- (ii) v + u is a solution.
- (iii) λv is a solution, for all $\lambda \in \mathbb{R}$.

In particular : If v_1, \ldots, v_r are solutions, then any linear combination

```
\lambda_1 v_1 + \cdots + \lambda_r v_r
```

is a solution to the homogeneous system.

Let A be an $m \times n$ matrix. We can think of multiplication by A as a function from \mathbb{R}^n to \mathbb{R}^m , since $v \in \mathbb{R}^n$ implies $Av \in \mathbb{R}^m$.

2. Let W denote the **nullspace of A**, i.e., the set of all $v \in \mathbb{R}^n$ such that $Av = \mathbf{0}$. Then :

(i)
$$\mathbf{0} \in W$$

(ii) If $v_1, v_2 \in W$, then $v_1 + v_2 \in W$, since:

$$A(v_1 + v_2) = Av_1 + Av_2 = \mathbf{0} + \mathbf{0} = \mathbf{0}.$$

(iii) If
$$v \in W$$
, then $\lambda v \in W$, for all $\lambda \in \mathbb{R}$, since:

$$A(\lambda v) = \lambda A v = \lambda \mathbf{0} = \mathbf{0}.$$

In particular: If v_1, \ldots, v_r are in W then any linear combination

$$\lambda_1 v_1 + \cdots + \lambda_r v_r$$

is also in W.

3. Let $U \subseteq \mathbb{R}^m$ denote the **image of A**. That is, all vectors in \mathbb{R}^m of the form Av, with $v \in \mathbb{R}^n$. Then:

(i) $\mathbf{0} \in U$, since $\mathbf{0}_{\mathbb{R}^m} = A \cdot \mathbf{0}_{\mathbb{R}^n}$.

- (ii) If Av_1 , Av_2 are in U, then $Av_1 + Av_2 = A(v_1 + v_2)$ is in U.
- (iii) If Av is in U, then $\lambda(Av) = A(\lambda v)$ is in U, for all $\lambda \in \mathbb{R}$.

In particular: If v_1, \ldots, v_r are in U then any linear combination

$$\lambda_1 v_1 + \cdots + \lambda_r v_r$$

is also in U.

4. Now assume that A is an $n \times n$ matrix and let λ be an eigenvalue.

Let $E_{\lambda}(A) \subseteq \mathbb{R}^{n}$ denote the set of all λ -eigenvectors of A, together with the zero vector **0** of \mathbb{R}^{n} . $E_{\lambda}(A)$ is called the **eigenspace** of λ . Then: (i) $\mathbf{0} \in E_{\lambda}(A)$, by definition.

(ii) If v_1, v_2 are in $E_{\lambda}(A)$, then $v_1 + v_2$ is in $E_{\lambda}(A)$, since:

$$A(v_1+v_2)=Av_1+Av_2=\lambda v_1+\lambda v_2=\lambda(v_1+v_2).$$

(iii) If v is in $E_{\lambda}(A)$, then γv is in $E_{\lambda}(A)$, for all $\gamma \in \mathbb{R}$, since:

$$A(\gamma v) = \gamma A v = \gamma(\lambda v) = \gamma \lambda v = \lambda(\gamma v).$$

In particular: If v_1, \ldots, v_r are in $E_{\lambda}(A)$ then any linear combination

$$\gamma_1 v_1 + \cdots + \gamma_r v_r$$

is also in $E_{\lambda}(A)$.

5. Fix vectors $v_1, \ldots, v_r \in \mathbb{R}^n$. The **span** of v_1, \ldots, v_r is the set of all linear combinations of v_1, \ldots, v_r .

Let S denote the span of the vectors v_1, \ldots, v_r .

- (i) $\mathbf{0} \in S$, since $\mathbf{0} = \mathbf{0} \cdot \mathbf{v}_1 + \cdots + \mathbf{0} \cdot \mathbf{v}_r$.
- (ii) If $v = \alpha_1 v_1 + \dots + \alpha_r v_r \in S$ and $u = \beta_1 v_1 + \dots + \beta_r v_r \in S$, then $v + u \in S$, since:

$$v + u = (\alpha_1 v_1 + \dots + \alpha_r v_r) + (\beta_1 v_1 + \dots + \beta_r v_r)$$

= $(\alpha_1 + \beta_1)v_1 + \dots + (\alpha_r + \beta_r)v_r.$

(iii) If $v = \alpha_1 v_1 + \cdots + \alpha_r v_r \in S$ and $\gamma \in \mathbb{R}$, then $\gamma v \in S$, since:

$$\gamma \mathbf{v} = \gamma (\alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r \in S)$$
$$= (\gamma \alpha_1) \mathbf{v}_1 + \dots + (\gamma \alpha_r) \mathbf{v}_r$$

In particular: If w_1, \ldots, w_t are in S then any linear combination

 $\gamma_1 w_1 + \cdots + \gamma_t w_t$

is also in S.

In other words: A linear combination of linear combinations of v_1, \ldots, v_r is a linear combination of v_1, \ldots, v_r .

Definition

A subset $W \subseteq \mathbb{R}^n$ is called a subspace of \mathbb{R}^n if it satisfies the following properties:

(i) $\mathbf{0} \in W$. (ii) If $v_1, v_2 \in W$, then $v_1 + v_2 \in W$. (iii) if $v \in W$, then $\lambda v \in W$, for all $\lambda \in \mathbb{R}$.

In particular: If v_1, \ldots, v_r are in W then any linear combination

$$\gamma_1 v_1 + \cdots + \gamma_r v_r$$

is also in W.

Therefore: The Examples 1-5 above are all subspaces of \mathbb{R}^n .

What are the subspaces of \mathbb{R}^2 ?

- (i) $\{\mathbf{0}\}$ is a subspace of \mathbb{R}^2 .
- (ii) \mathbb{R}^2 is a subspace of \mathbb{R}^2 .
- (iii) Any line through the origin is a subspace of \mathbb{R}^2 .

These are the only subspaces of \mathbb{R}^2 .

Let L be a line in \mathbb{R}^2 through the origin. L is given by y = mx, where m is the slope of L.

Thus, L is the solution set of the homogeneous equation x + (-m)y = 0, which shows that L is a subspace.

The subspaces of \mathbb{R}^3 are:

- (i) {**0**}.
- (ii) \mathbb{R}^3 .
- (iii) Any line through the origin.
- (iv) Any plane through the origin.

Why: Each of these sets are the solution set to a homogeneous system of equations. For example:

- (a) Any plane through the origin is defined by an equation of the form: ax + by + cz = 0, for fixed constants $a, b, c \in \mathbb{R}$.
- (b) Any line through the origin is the intersection of two planes through the origin and is thus the solution set to a system of equations of the form:

$$ax + by + cz = 0$$
$$dx + ey + fz = 0.$$

A line or plane in \mathbb{R}^2 or \mathbb{R}^3 that does not pass through the origin, is NOT a subspace. We require subspaces to contain **0**.

Another reason: Suppose L: y = mx + b is a line in \mathbb{R}^2 , with $b \neq 0$. Let $v_1 = \begin{bmatrix} a \\ ma + b \end{bmatrix}$ and $v_2 = \begin{bmatrix} c \\ mc + b \end{bmatrix}$ be vectors in L. Then $v_1 + v_2 = \begin{bmatrix} a+c \\ m(a+c)+2b \end{bmatrix}$, which does not belong to L.

Definition

Let $U \subseteq \mathbb{R}^n$ be a subspace. Vectors $v_1, \ldots, v_r \in U$ span U if U is the subspace spanned by v_1, \ldots, v_r ,

In other words, U is the set of all linear combinations of v_1, \ldots, v_r .

In this case we write $U = \text{span}\{v_1, \ldots, v_r\}$.

Important Observation: Let $A = [v_1 \ v_2 \ \cdots \ v_r]$ be the $n \times r$ matrix whose columns are v_1, \ldots, v_r . Then:

$$u \in U$$
 if and only if $u = A \cdot \begin{vmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{vmatrix}$,

since

$$A \cdot \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{bmatrix} = \begin{bmatrix} v_1 \cdots v_r \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{bmatrix} = \lambda_1 v_1 + \cdots + \lambda_r v_r.$$

Comment

Thus: A vector $b \in \mathbb{R}^n$ is in the span of v_1, \ldots, v_r if and only if the $n \times r$ system of equations given by

$$A \cdot \mathbf{X} = b$$

has a solution.

Moreover, if
$$\begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{bmatrix}$$
 is a solution, then

$$b = \lambda_1 v_1 + \dots + \lambda_r v_r.$$

Important Consequence: Given any $m \times n$ matrix A, the subspace im(A), the image of A, is the subspace spanned of \mathbb{R}^m spanned by the columns of A.

Let
$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. Is $b = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ in span $\{v_1, v_2, v_3\}$?

Solution: Let $A = [v_1 \ v_2 \ v_3]$. We seek a solution to $A \cdot \mathbf{X} = b$. We use Gaussian elimination.

$$\begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & 1 & | & 0 \\ 1 & 1 & 0 & | & 1 \end{bmatrix} \xrightarrow{-1 \cdot R_1 + R_3} \begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & 1 & | & 0 \\ 0 & 1 & -1 & | & -1 \end{bmatrix} \xrightarrow{-1 \cdot R_2 + R_3} \begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & -2 & | & -1 \end{bmatrix}$$
$$\xrightarrow{-\frac{1}{2} \cdot R_3} \begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & | & \frac{1}{2} \end{bmatrix} \xrightarrow{-1 \cdot R_3 + R_1} \xrightarrow{-1 \cdot R_3 + R_1} \begin{bmatrix} 1 & 0 & 0 & | & \frac{3}{2} \\ 0 & 1 & 0 & | & \frac{3}{2} \\ -\frac{1}{2} \cdot R_3 & | & \frac{1}{2} \end{bmatrix} \cdot$$
This shows that $b = \frac{3}{2} \cdot v_1 - \frac{1}{2} \cdot v_2 + \frac{1}{2} \cdot v_3$.

Example continued

CHECK:
$$\frac{3}{2} \cdot v_1 - \frac{1}{2} \cdot v_2 + \frac{1}{2} \cdot v_3 =$$

 $\frac{3}{2} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{2} \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \frac{1}{2} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ 0 \\ \frac{3}{2} \end{bmatrix} - \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = b.$

Lecture 15: Subspaces of Euclidean Space and Spanning Sets

Class Example

Determine if
$$b = \begin{bmatrix} 4\\3\\1 \end{bmatrix}$$
 belongs to span $\{v_1, v_2, v_3\}$, for
 $v_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, v_3 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}.$

- -

If so, write b as a linear combination of v_1, v_2, v_3 .

Then, verify your answer.

Class Example continued

Solution: Using Gaussian Elimination,

$$\begin{bmatrix} 1 & 2 & 1 & | & 4 \\ 2 & 1 & 1 & | & 3 \\ 1 & 1 & 2 & | & 1 \end{bmatrix} \xrightarrow{-2 \cdot R_1 + R_2} \begin{bmatrix} 1 & 2 & 1 & | & 4 \\ 0 & -3 & -1 & | & -5 \\ 0 & -1 & 1 & | & -3 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow -R_3} \begin{bmatrix} 1 & 2 & 1 & | & 4 \\ 0 & 1 & -1 & | & 3 \\ 0 & -3 & -1 & | & -5 \end{bmatrix}$$

$$\xrightarrow{-2 \cdot R_2 + R_1} \begin{bmatrix} 1 & 0 & 3 & | & -2 \\ 0 & 1 & -1 & | & 3 \\ 0 & 0 & -4 & | & 4 \end{bmatrix} \xrightarrow{-\frac{1}{4} \cdot R_3} \begin{bmatrix} 1 & 0 & 3 & | & -2 \\ 0 & 1 & -1 & | & 3 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

$$\xrightarrow{-3 \cdot R_3 + R_1} \xrightarrow{1 \cdot R_3 + R_2} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$
Thus: $b = 1 \cdot v_1 + 2 \cdot v_2 - v_3$.

Class Example continued

CHECK:
$$1 \cdot v_1 + 2 \cdot v_2 - v_3 =$$

 $1 \cdot \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + 2 \cdot \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}$

Lecture 15: Subspaces of Euclidean Space and Spanning Sets