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Eigenvectors and Eigenvalues

Let A be an n × n matrix. The real number λ is called an eigenvalue of
A if there exists a non-zero vector v ∈ R2 such that Av = λv .

The vector v is called an eigenvector of A associated to λ or a
λ-eigenvector.

To find the eigenvalues of the n × n matrix A:

Solve the equation |λ · In − A| = 0, for λ.

To find the λ-eigenvectors of the n × n matrix A: Find the solutions
to the homogenous matrix equation

(λIn − A) · ~X = ~0.

The basic solutions to this homogeneous system are called basic
eigenvectors for λ or basic λ-eigenvectors.

Thus, every λ-eigenvector is a linear combination of basic λ-eigenvectors.
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Definition

Let A be an n × n matrix.

(i) The polynomial cA(x) = |x · In − A| is called the characteristic
polynomial of A. For any real number λ, cA(λ) = |λ · I − A|, so that λ
is an eigenvalue of A if and only if λ is a root of cA(x).

(ii) The eigenvalue λ has multiplicity m, if λ occurs m times as a root of
cA(x).

(iii) The matrix A is diagonalizable if there exists an invertible matrix P
such that P−1AP is a diagonal matrix.
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Example

Let C =

1 1 0
0 2 0
0 0 1

. Find the characteristic polynomial of C , the

eigenvalues (with multiplicities), the eigenvectors and a diagonalizing
matrix.

The characteristic polynomial of C is:

cC (x) = |x · I − C | =

∣∣∣∣∣∣
x − 1 −1 0

0 x − 2 0
0 0 x − 1

∣∣∣∣∣∣ = (x − 1)2(x − 2).

Thus , the eigenvalues of C are 1, 1, 2, and 1 is eigenvalue of multiplicity

two. From last lecture, we saw that the basic eigenvectors for 1 are

1
0
0


and

0
0
1

.
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Example continued

The eigenvector for 2 is given by the nullspace of the matrix

2I2 − C =

2 0 0
0 2 0
0 0 2

−
1 1 0

0 2 0
0 0 1

 =

1 −1 0
0 0 0
0 0 1

 .

Thus,

1
1
0

 is a basic eigenvector for 2.Now put all three basic

eigenvectors in to a matrix P, so that P =

1 0 1
0 0 1
0 1 0

. Calculation (or

computer software) gives P−1 =

1 −1 0
0 0 1
0 1 0

.
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Example continued

Calculating P−1CP we get1 −1 0
0 0 1
0 1 0

 ·
1 1 0

0 2 0
0 0 1

 ·
1 0 1

0 0 1
0 1 0

 =

1 −1 0
0 0 1
0 1 0

 ·
1 0 2

0 0 2
0 1 0



=

1 0 0
0 1 0
0 0 2

 .
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Class Example

For the matrix A =

[
−1 2
0 1

]
, find cA(x), the eigenvalues and

eigenvectors, then diagonalize A.

Solution: cA(x) = |xI2 − a| =

∣∣∣∣x + 1 −2
0 x − 1

∣∣∣∣ = x2 − 1 = (x − 1)(x + 1).

Therefore the eigenvalues of A are 1, -1.

To find the -1-eigenvectors:

−1 · I2 − A =

[
−1 0
0 −1

]
−
[
−1 2
0 1

]
=

[
0 −2
0 −2

]
−1·R1+R2−−−−−−→

[
0 −2
0 0

]
,

so

[
1
0

]
is a basic eigenvector for 1.
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Class Example continued

To find the 1-eigenvectors:

1 · I2 − A =

[
1 0
0 1

]
−
[
−1 2
0 1

]
=

[
2 −2
0 0

]
,

so

[
1
1

]
is a basic vector for 1. Set P =

[
1 1
0 1

]
. Then P−1 =

[
1 −1
0 1

]
.

Thus, P−1AP =[
1 −1
0 1

]
·
[
−1 2
0 1

]
·
[

1 1
0 1

]
=

[
−1 1
0 1

]
·
[

1 1
0 1

]
=

[
−1 0
0 1

]
.
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When is a matrix diagonalizable?

Theorem. Let A be an n × n matrix. The following conditions are
equivalent.

(i) A is diagonalizable

(ii) cA(x) = (x − λ1)m1(x − λ2)m2 · · · (x − λr )mr and for each λi , A has
mi basic vectors.

Moreover: When this is the case, if v1, . . . , vn are the n basic vectors
from (ii), and we let P denote the n × n matrix whose columns are the
vi , then P−1AP is the n × n matrix with

λ1, . . . , λ1, λ2, . . . , λ2, . . . , λr , . . . , λr

down its main diagonal, where each λi appears mi times.

To summarize: The n × n matrix A is diagonalizable, if A has n
eigenvalues (counted with multiplicities) and for each eigenvalue λ, if the
multiplicity of λ is m, then A must have m basic eigenvectors.
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Illustrative Examples Revisited

We apply the theorem to each of the Illustrative Examples from the last
lecture.

Example 1. No eigenvalues. For A =

[
0 −1
1 0

]
,

cA(x) = |λI2 −A| =

∣∣∣∣ x 1
−1 x

∣∣∣∣ = x2 + 1, which has no real roots, and thus

A no eigenvalues (over R). Therefore, A is not diagonalizable. (Recall
from last lecture, A is a rotation matrix.)

Example 2. An eigenvalue with multiplicity two and one basic

eigenvector. Consider B =

[
1 1
0 1

]
. Then

cB(x) = |xI2 − B| =

∣∣∣∣x − 1 −1
0 x − 1

∣∣∣∣ = (x − 1)2,

so 1 is an eigenvalue of multiplicity two.

On the other hand, we saw that B has just one basic eigenrvector

[
1
0

]
.

Therefore B is not diagonalizable
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Illustrative Examples Revisited

Example 3. A diagonalizable matrix with an eigenvalue of
multiplicity greater then one. For the matrix C in the example above,
1 is an eigenvalue of multiplicity two, with two basic eigenvectors and 2
is an eigenvalue of multiplicity one, with one basic eigenvector.

C is diagonalizable and the diagonalizing matrix P is obtained by taking
the basic eigenvectors as columns.
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Illustrative Examples Revisited

Example 4. A eigenvalue of multiplicity three and one basic

eigenvector. Consider D =

1 1 0
0 1 1
0 0 1

. Then

cD(x) = |λ · I3 − D| =

∣∣∣∣∣∣
x − 1 −1 0

0 x − 1 −1
0 0 x − 1

∣∣∣∣∣∣ = (x − 1)3,

so 1 is an eigenvalue of D of multiplicity three.

Moreover, we saw that

1
0
0

 is the only basic vector, so D is not

diagonalizable.
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Comment

Computing powers of a diagonalizable matrix: Suppose A is
diagonalizable. We want to compute An, all n. Then P−1AP = D, where
D = diag(λ1, . . . , λn). Note that Dr = diag(λr1, . . . , λ

r
n), for all r .

To compute the powers of A, we note that A = PDP−1.

(i) A2 = PDP−1 · PDP−1 = PD2P−1.

(ii) A3 = A2 · A = PD2P−1 · PDP−1 = PD3P−1.

(iii) Continuing, An = PDnP−1, for all n.

Thus, if A is diagonalizable, in order to calculate the powers of A, we just
have to diagonalize A and compute the powers of a diagonal matrix.
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Example

From an earlier example, for A =

[
−1 2
0 1

]
, A has eigenvalues −1, 1 with

eigenvectors

[
1
0

]
and

[
1
1

]
. Thus, we take P =

[
1 1
0 1

]
, P−1 =

[
1 −1
0 1

]
,

P−1AP = D, and thus An = PDnP−1, for D =

[
−1 0
0 1

]
. Therefore,

Dn =

[
(−1)n 0

0 1

]
. Thus,

An =

[
1 1
0 1

]
·
[

(−1)n 0
0 1

]
·
[

1 −1
0 1

]
=

[
1 1
0 1

]
·
[

(−1)n (−1)n+1

0 1

]

=

[
(−1)n (−1)(n+1) + 1

0 1

]
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Applications

First Application: Solving recurrence relations.

Consider the sequence of non-negative numbers a0, a1, a2, . . ., where

a0 = 1, a1 = 2, . . . , ak+1 = −7ak + 8ak−1,

for k ≥ 1. Thus, a2 = −7 · 2 + 8 · 1 = −6, a3 = −7 · (−6) + 8 · 2 = 58.

Find the value of ak for all k ≥ 0.

Solution: Set up a matrix equation. Let vk =

[
ak
ak+1

]
, and A =

[
0 1
8 −7

]
.

Thus, for k ≥ 0,

A · vk =

[
0 1
8 −7

]
·
[

ak
ak+1

]
=

[
ak+1

ak+2

]
= vk+1.

Since v1 = Av0 and v2 = Av1, we have v2 = A2v0. And:
v3 = Av2 = A · A2v = A3v0. Continuing, we have vk = Akv0, for all k.
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Applications Continued

Thus: To find vk , we must calculate Ak , and for this, we will diagonalize

A. cA(x) =

∣∣∣∣ x −1
−8 x + 7

∣∣∣∣ = x2 + 7x − 8. Therefore, the eigenvalues of A

are 1,−8.

The usual calculation leads to: The basic eigenvector for 1 is

[
1
1

]
and the

basic eigenvector for -8 is

[
1
−8

]
. Now we take P =

[
1 1
1 −8

]
. Thus,

P−1 =

[
8
9

1
9

1
9 − 1

9

]
. From before, we have Ak = PDkP−1, where

D =

[
1 0
0 −8

]
. Thus,
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Applications Continued

Ak =

[
1 1
1 −8

]
·
[

1 0
0 (−8)k

]
·
[
8
9

1
9

1
9 − 1

9

]
=

[
1 (−8)k

1 (−8)k+1

]
·
[
8
9

1
9

1
9 − 1

9

]

=

[
8+(−8)k

9
1−(−8)k

9
8+(−8)k+1

9
1−(−8)k+1

9

]
.

Therefore,[
ak
ak+1

]
= vk = Ak ·v0 =

[
8+(−8)k

9
1−(−8)k

9
8+(−8)k+1

9
1−(−8)k+1

9

]
·
[

1
2

]
=

[
8+(−8)k+2−2(−8)k

9
−

]
.

Thus, ak = 8+(−8)k+2−2(−8)k
9 = 10−(−8)k

9 .
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Definition

Let A be an n × n matrix and e, the Euler number. Define eA by the
formula

eA = In + A +
1

2!
A2 +

1

3!
A3 +

1

4!
A4 + · · ·
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Applications Continued

Calculating eA for A diagonalizable.

Suppose A is diagonalizable. Then A = PDP−1 for D an n × n diagonal
matrix with the eigenvalues of A down its main diagonal.

Thus, An = PDnP−1, for all n, as before.Therefore:

eA = In + A +
1

2!
A2 +

1

3!
A3 + · · ·

= In + (PDP−1) +
1

2!
(PD2P−1) +

1

3!
(PD3P−1) + · · ·

= P{In + D +
1

2!
D2 +

1

3!
D3 + · · · }P−1

= PeDP−1.
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Applications Continued

To calculate eD , suppose D = diag(λ1, . . . , λn). Then

1

r !
Dr = diag(

λr1
r !
, . . . ,

λrn
r !

).

Summing from r 0 to ∞, we see

eD =
∞∑
i=0

1

r !
Dr =

∞∑
i=0

diag(
λr1
r !
, . . . ,

λrn
r !

) = diag(eλ1 , . . . , eλn).

For example: if A =

[
−1 2
0 1

]
, then we have seen that A = PDP−1, for

P =

[
1 1
0 1

]
, P−1 =

[
1 −1
0 1

]
, and D =

[
−1 0
0 1

]
. Thus:

eA = PeDP−1 =

[
1 1
0 1

]
·
[
e−1 0

0 e

]
·
[

1 −1
0 1

]
=

[
e−1 e

0 e

]
·
[

1 −1
0 1

]

=

[
e−1 e − e−1

0 e

]
.
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