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Eigenvectors and Eigenvalues

Let A be an n × n matrix. The real number λ is called an eigenvalue of
A if there exists a non-zero vector v ∈ R2 such that Av = λv .

The vector v is called an eigenvector of A associated to λ or a
λ-eigenvector.

Example: Let A =

[
3 5
1 −1

]
, v =

[
5
1

]
. Then

A · v =

[
3 5
1 −1

]
·
[

5
1

]
=

[
20
4

]
= 4 ·

[
5
1

]
= 4 · v ,

so 4 is an eigenvalue of A with eigenvector v .
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Example continued

For the matrix A =

[
3 5
1 −1

]
, -2 is a second eigenvalue with associated

eigenvalue

[
1
−1

]
.

Solution: [
3 5
1 −1

]
·
[

1
−1

]
=

[
−2
2

]
= −2 ·

[
1
−1

]
.
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Comment

If λ is an eigenvalue for the 2× 2 matrix A =

[
a b
c d

]
with eigenvector v ,

then Av = λv .

On the other hand, λv = (λI2) · v =

[
λ 0
0 λ

]
· v

Thus, Av = (λI2)v , so (λI2 − A)v = 0.

Therefore, the homogeneous system of equations

(λI2 − A)X =

[
λ− a −b
−c λ− d

]
· X = 0

has a non-trivial solution.
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Comment

Consequently: If λ is an eigenvalue of A with eigenvector v , then:

(i) det(λI2 − A) = det(

[
λ− a −b
−c λ− d

]
) = 0.

(ii) v is in the nullspace of (λI2 − A).

In fact: Items (i) and (ii) hold for any n × n matrix. in other words

To find the eigenvalues of the n × n matrix A:

Solve the equation |λ · In − A| = 0, for λ.

To find the λ-eigenvectors of the n × n matrix A: Find the basic
solutions to the homogenous matrix equation

(λIn − A) · ~X = ~0.
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Example

Find the eigenvectors and eigenvalues for A =

[
0 −6
1 5

]
.

Solution: Set det(λI2 − A) =

∣∣∣∣λ− 0 6
−1 λ− 5

∣∣∣∣ = 0. Thus,

λ(λ− 5) + 6 = λ2 − 5λ+ 6 = 0.

Therefore λ = 2 and λ = 3 are the eigenvalues of A.
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Example continued

To find an eigenvector for 2 we need the nullspace of

(2I2 − A) =

[
2 0
0 2

]
−
[

0 −6
1 5

]
=

[
2 6
−1 −3

]
.

Using EROs: [
2 6
−1 −3

]
1
2 ·R1−−−→

[
1 3
−1 −3

]
1·R1+R2−−−−−→

[
1 3
0 0

]
,

from which we see that the nullspace is generated by

[
3
−1

]
.

In other words,

[
3
−1

]
is a 2-eigenvector of A.

In fact, all of the vectors s ·
[

3
−1

]
, with s ∈ R are 2-eigenvectors of A.
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Example continued

To find an eigenvector for 3 we need the nullspace of

(3I2 − A) =

[
3 0
0 3

]
−
[

0 −6
1 5

]
=

[
3 6
−1 −2

]
.

Using EROs: [
3 6
−1 −2

]
1
3 ·R1−−−→

[
1 2
−1 −2

]
1·R1+R2−−−−−→

[
1 2
0 0

]
,

from which we see that the nullspace is generated by

[
2
−1

]
.

In other words,

[
2
−1

]
is a 3-eigenvector of A.

In fact, all of the vectors r ·
[

2
−1

]
, with r ∈ R are 2-eigenvectors of A.
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Example

Find the eigenvalues and eigenvectors for A =

0 1 0
1 0 0
0 0 2


Solution:

|λI3 − A| =

∣∣∣∣∣∣
λ −1 0
−1 λ 0
0 0 λ− 2

∣∣∣∣∣∣ = (λ− 2) ·
∣∣∣∣ λ −1
−1 λ

∣∣∣∣ = (λ− 2)(λ2 − 1).

Thus, the eigenvalues of A are: 2, 1, -1.
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Example continued

To find the 2-eigenvectors, we find the solutions to the equation
(2I3 − A) · ~X = ~0:

2I3 − A =

2 0 0
0 2 0
0 0 2

−
0 1 0

1 0 0
0 0 2

 =

 2 −1 0
−1 2 0
0 0 0


1
2 ·R1+R2−−−−−→

2 −1 0
0 3

2 0
0 0 0

 .
This shows that 2I3 − A has rank two, and thus, one basic solution:

0
0
1

.

Therefore the vectors {s ·

0
0
1

} with s ∈ R are all of the 2-eigenvectors.
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Example continued

For the 1-eigenvectors:

1 · I3 − A =

1 0 0
0 1 0
0 0 1

−
0 1 0

1 0 0
0 0 2

 =

 1 −1 0
−1 1 0
0 0 −1


1·R1+R2−−−−−→

1 −1 0
0 0 0
0 0 −1

 .
This shows that 1 · I3 − A has rank two, and there is one basic solution:1

1
0

.
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Example continued

For the -1-eigenvectors:

−1 · I3 − A =

−1 0 0
0 −1 0
0 0 −1

−
0 1 0

1 0 0
0 0 2

 =

−1 −1 0
−1 −1 0
0 0 −3


−1·R1+R2−−−−−−→

−1 −1 0
0 0 0
0 0 −3

 .
This shows that −1 · I3 − A has rank two and thus, there is one basic

solution:

−1
1
0

.

Thus, for this example, there are three distinct eigenvalues, each with a
single eigenvector associated to it.

We will see below, that this phenomenon need not occur.
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Class Example

For the matrices A =

[
0 2
1 1

]
and B =

−6 1 2
0 3 4
0 0 5

, find the

eigenvalues and eigenvectors for A, and find the eigenvalues for B.

Solution:

|λI2 − A| =

∣∣∣∣ λ −2
−1 λ− 1

∣∣∣∣ = λ2 − λ− 2 = (λ+ 1)(λ− 2).

Thus the eignevalues of A are -1, 2. To find a -1-eigenvector:

−1 · I2 − A =

[
−1 0
0 −1

]
−
[

0 2
1 1

]
=

[
−1 −2
−1 −2

]
−1·R1−−−−−−→
−1·R1+R2

[
1 2
0 0

]
,

which shows that

[
−2
1

]
is a -1-eigenvector of A.

Note: Any multiple of

[
−2
1

]
is also a -1-eigenvector.
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Example continued

To find a 2-eigenvector of A:

2I2 − A =

[
2 0
0 2

]
−
[

0 2
1 1

]
=

[
2 −2
−1 1

]
R1↔R2−−−−→

[
−1 1
2 −2

]
2·R1+R2−−−−−→

[
−1 1
0 0

]
.

Thus,

[
1
1

]
, or any multiple of it, is a 2-eigenvector for A.

The eigenvalues of B are the roots of∣∣∣∣∣∣
λ+ 6 −1 −2

0 λ− 3 4
0 0 λ− 5

∣∣∣∣∣∣ = (λ+ 6)(λ− 3)(λ− 5),

since B is upper triangular. Therefore, -6, 3, 5 are the eigenvalues of B.
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Illustrative Examples

The following examples illustrate a number of different phenomena
regarding the number of eigenvalues and eigenvectors.

Example 1. No eigenvalues. Consider the matrix A =

[
0 −1
1 0

]
. Then,

|λI2 − A| =

∣∣∣∣ λ 1
−1 λ

∣∣∣∣ = λ2 + 1, which has no real roots, and thus A no

eigenvalues (over R). To see what is happening geometrically:

Let ~i and ~j denote the unit vectors along the x and y axes. Then:

A · ~i =

[
0 −1
1 0

]
·
[

1
0

]
=

[
0
1

]
= ~j

and

A · ~j =

[
0 −1
1 0

]
·
[

0
1

]
=

[
−1
0

]
= −~i .

Thus, geometrically, the matrix A represents a rotation of the plane R2

counter-clockwise by 90 degrees.

Such a transformation does not preserve the direction of any vector in
R2, so this explains why there are no eigenvalues or eigenvectors.
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Illustrative Examples continued

Example 2. An eigenvalue with multiplicity two and one

eigenvector. Consider B =

[
1 1
0 1

]
. Then

|λI2 − B| =

∣∣∣∣λ− 1 −1
0 λ− 1

∣∣∣∣ = (λ− 1)2,

so 1 is an eigenvalue of multiplicity two. That is, we think of the
eigenvalues of B as as 1, 1.

To find the 1-eigenvectors:

1 · I2 − B =

[
1 0
0 1

]
−
[

1 1
0 1

]
=

[
0 −1
0 0

]
,

which shows that the only eigenvectors are multiples of the basic vector[
1
0

]
.
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Illustrative Examples continued

Example 3. An eigenvalue with multiplicity two and two basic

eigenvectors. Consider C =

1 1 0
0 2 0
0 0 1

. Then

|λ · I3 − C | =

∣∣∣∣∣∣
λ− 1 −1 0

0 λ− 2 0
0 0 λ− 1

∣∣∣∣∣∣ = (λ− 1)2(λ− 2),

so the eigenvalues are 1, 1, 2.

For the 1-eigenvectors:1 · I3 − C =1 0 0
0 1 0
0 0 1

−
1 1 0

0 2 0
0 0 1

 =

0 −1 0
0 1 0
0 0 0

 1·R1+R2−−−−−→

0 −1 0
0 0 0
0 0 0

 ,
which gives rise to two independent eigenvectors

1
0
0

 and

0
0
1

.
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Illustrative Examples continued

To elaborate: The 1-eigenvectors of C are the solutions to the
homogeneous system of equations whose coefficient matrix is 1 · I3 − C .

The RREF of this matrix is

0 1 0
0 0 0
0 0 0

. If we assume the variables are

x , y , z , then the solutions are given by x = r , y = 0, z = s, where r , s can
be any real numbers. In vector form, the solutions are:xy

z

 = r ·

1
0
0

+ s ·

0
0
1

 ,

so the basic solutions to the homogeneous system are

1
0
0

 and

0
0
1

, and

these are two independent 1-eigenvectors of C . It is easy to check that 1
−1
0

 is a single independent 2-eigenvector of C .
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Illustrative Examples continued

Example 4. A eigenvalue of multiplicity three and one basic

eigenvector. Consider D =

1 1 0
0 1 1
0 0 1

. Then

|λ · I3 − D| =

∣∣∣∣∣∣
λ− 1 −1 0

0 λ− 1 −1
0 0 λ− 1

∣∣∣∣∣∣ = (λ− 1)3,

so 1 is an eigenvalue of D of multiplicity three, i.e., the eigenvalues of D
are 1, 1, 1.

For the 1-eigenvectors of D:

1 · I3 − D =

1 0 0
0 1 0
0 0 1

−
1 1 0

0 1 1
0 0 1

 =

0 −1 0
0 0 −1
0 0 0

 ,
from which it follows that all 1-eigenvectors of D are a multiple of

1
0
0

.
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Example Revisited

For the matrix A =

[
0 6
1 5

]
, we saw that the eigenvalues of A are 2 and

3, with associated eigenvectors

[
3
−1

]
and

[
2
−1

]
. Form a matrix P using

the eigenvectors as columns, P =

[
3 2
−1 −1

]
. Then P−1 =

[
1 2
−1 −3

]
.

Moreover,

P−1AP =

[
1 2
−1 −3

]
·
[

0 −6
1 5

]
·
[

3 2
−1 −1

]

=

[
1 2
−1 −3

]
·
[

6 6
−2 −3

]
=

[
2 0
0 3

]
.

Thus, P−1AP is a diagonal matrix with the eigenvalues of A down its
main diagonal.

In this case we say that A is diagonalizable.

Eigenvalues and eigenvectors play a central role in diagonalizing square
matrices.
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Class Example

Diagonalize the matrix A =

[
−1 3
0 5

]
. In other words find an invertible

2× 2 matrix P such that P−1AP is a diagonal matrix with the
eigenvalues of A down the diagonal.

Solution: First find the eigenvalues and corresponding eigenvectors of A.

|λI2 − A| =

∣∣∣∣λ+ 1 −3
0 λ− 5

∣∣∣∣ = (λ+ 1)(λ− 5),

so the eigenvalues of A are -1 and 5.

For the -1-eigenvector:

−1 · I2 − A =

[
−1 0
0 −1

]
−
[
−1 3
0 5

]
=

[
0 −3
0 −6

]
− 1

3 ·R1−−−−−→
6·R1+R2

[
0 1
0 0

]
,

which shows

[
1
0

]
is a basic -1-eigenvector for A.
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Class Example continued

For the 5-eigenvector:

5I2 − A =

[
5 0
0 5

]
−
[
−1 3
0 5

]
=

[
6 −3
0 0

]
,

which shows that

[
1
2

]
is a basic 5-eigenvector for A. Putting the two

eigenvectors as columns, we obtain P =

[
1 1
0 2

]
. Thus, P−1 =

[
1 − 1

2
0 1

2

]
.

Therefore, P−1AP =[
1 − 1

2
0 1

2

]
·
[
−1 3
0 5

]
·
[

1 1
0 2

]
=

[
1 − 1

2
0 1

2

]
·
[
−1 5
0 10

]
=

[
−1 0
0 5

]
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Comment

Computing powers of a diagonalizable matrix: Suppose A is
diagonalizable. We want to compute An, all n. Then P−1AP = D, where

D =

[
λ1 0
0 λ2

]
. Note that Dn =

[
λn1 0
0 λn2

]
, for all n.

To compute the powers of A, we note that A = PDP−1.

(i) A2 = PDP−1 · PDP−1 = PD2P−1.

(ii) A3 = A2 · A = PD2P−1 · PDP−1 = PD3P−1.

(iii) Continuing, An = PDnP−1, for all n.

Thus, if A is diagonalizable, in order to calculate the powers of A, we just
have to diagonalize A and compute the powers of a diagonal matrix.
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Example

From an earlier example, for A =

[
0 −6
1 5

]
, A has eigenvalues 2, 3 with

eigenvectors

[
3
−1

]
and

[
2
−1

]
. Thus, we take P =

[
3 2
−1 −1

]
,

P−1 =

[
1 2
−1 −3

]
, and have P−1AP = D, for D =

[
2 0
0 3

]
. So

An =

[
1 2
−1 −3

]
·
[

2 0
0 3

]n
·
[

3 2
−1 −1

]
=

[
1 2
−1 −3

]
·
[

2n 0
0 3n

]
·
[

3 2
−1 −1

]

=

[
1 2
−1 −3

]
·
[

3 · 2n 2n+1

−3n −3n

]
=

[
3 · 2n − 2 · 3n 2n+1 − 2 · 3n

−3 · 2n + 3n+1 −2n+1 + 3n+1

]
.
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