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Definition

Recall the definitions needed to calculate the determinant of a square
matrix, A = (aij).

(i) If A =

[
a b
c d

]
, the determinant of A is the real number ad − bc. We

denote this number either by det(A) or |A|. For square matrices of larger
size, the determinant is defined by reducing to matrices of smaller sizes.

(ii) Set Aij to be the (n − 1)× (n − 1) matrix obtained by deleting the
ith row and jth column of A.

(iii) Set cij(A) = (−1)i+j · |Aij |. This is called the (i , j) cofactor of A.

(iv) Expansion along the ith row:

|A| = ai1 · ci1(A) + ai2 · ci2(A) + · · ·+ ain · cin(A).

(v) Expansion along the jth column:

|A| = a1j · c1j(A) + a2j · c2j(A) + · · ·+ anj · cnj(A).
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Example

Calculate the determinant of A =

1 2 3
3 2 0
1 −1 −2

.

Expanding along the second row, we get

|A| = −3 ·
∣∣∣∣ 2 3
−1 −2

∣∣∣∣+ 2 ·
∣∣∣∣1 3
1 −2

∣∣∣∣− 0 · |A23|

= −3 · (−4 + 3) + 2 · (−2− 3) = 3 + (−10) = −7.

Expanding along the third column, we get

|A| = 3 ·
∣∣∣∣3 2
1 −1

∣∣∣∣− 0 · |A32|+ (−2) ·
∣∣∣∣1 2
3 2

∣∣∣∣
= 3 · (−3− 2) + (−2) · (2− 6) = −15 + 8 = −7.
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Properties of the Determinant

Let A be an n × n matrix.

(i) If A has a row or column of zeros, |A| = 0.

(ii) If two rows or two columns of A are the same, then |A| = 0.

(iii) If A′ is obtained from A by multiplying a row (or column) of A by a
number and adding it to a different row (or column), then |A′| = |A|.

(iv) If A′ is obtained from A by interchanging two rows or two columns,
then |A′| = −|A|.

(v) If A′ is obtained from A by multiplying a row (or column) of A by
λ 6= 0, then |A′| = λ · |A|.

(vi) If A is upper or lower triangular matrix, i.e., all entries below the
main diagonal or all entries above the main diagonal of A are zero,
then det(A) is the product of the diagonal entries of A.

(vii) If B is an n × n matrix, then |A · B| = |A| · |B| = |B · A|.
(viii) |At | = |A|.
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Example

Use elementary rows operations to evaluate the determinant of

A =

2 4 6
2 1 2
4 4 4

.

Solution:∣∣∣∣∣∣
2 4 6
2 1 2
4 4 4

∣∣∣∣∣∣ = 2 ·

∣∣∣∣∣∣
1 2 3
2 1 2
4 4 4

∣∣∣∣∣∣ = 2 ·

∣∣∣∣∣∣
1 2 3
0 −3 −4
4 4 4

∣∣∣∣∣∣ = 2 ·

∣∣∣∣∣∣
1 2 3
0 −3 −4
0 −4 −8

∣∣∣∣∣∣
= 2 ·

∣∣∣∣∣∣
1 2 3
0 −3 −4
0 0 − 8

3

∣∣∣∣∣∣ = 2 · (1 · (−3) · (−8

3
)) = 16.

CHECK:

|A| = 2

∣∣∣∣1 2
4 4

∣∣∣∣− 4

∣∣∣∣2 2
4 4

∣∣∣∣+ 6

∣∣∣∣2 1
4 4

∣∣∣∣ = 2 · (−4)− 4 · 0 + 6 · 4 = 16.
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Class Example

Use elementary row operations to put the matrix A =

 1 3 −1
2 4 5
−1 1 2


into upper triangular form, and then find det(A).

Solution:∣∣∣∣∣∣
1 3 −1
2 4 5
−1 1 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 3 −1
0 −2 7
−1 1 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 3 −1
0 −2 7
0 4 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 3 −1
0 −2 7
0 0 15

∣∣∣∣∣∣ = −30.
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Important Theorem

Theorem. Let A be an n × n matrix. The following statements are
equivalent:

(i) The RREF of A is the n × n identity matrix.

(ii) The homogenous system A · X = 0 has a unique solution.

(iii) A is an invertible matrix.

(iv) det(A) 6= 0.

We’ve seen the role of the determinant in finding the inverse of a 2× 2

matrix. If A =

[
a11 a12
a21 a22

]
and |A| 6= 0, A−1 = 1

|A| ·
[
a22 −a12
−a21 a11

]
.

For example, if A =

[
2 1
1 2

]
, then A−1 = 1

3 ·
[

2 −1
−1 2

]
=

[
2
3 − 1

3
− 1

3
2
3

]
.
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A Formula for the Inverse in terms of the Determinant

Let A = (aij) be an n × n matrix and set C = (cij(A)), the cofactor
matrix. .

(i) The adjugate or classical adjoint of A is the matrix C t = ((cij(A))t ,
denoted adj(A).

(ii) A · adj(A) = |A| · In = adj(A) · A.

(iii) If |A| 6= 0, then A−1 = 1
|A| · adj(A).
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Example

Suppose A =

−1 0 3
2 2 1
0 3 1

.

(i) For the cofactor matrix, we obtain

C =



∣∣∣∣2 1
3 1

∣∣∣∣ −
∣∣∣∣2 1
0 1

∣∣∣∣ ∣∣∣∣2 2
0 3

∣∣∣∣
−
∣∣∣∣0 3
3 1

∣∣∣∣ ∣∣∣∣−1 3
0 1

∣∣∣∣ −
∣∣∣∣−1 0

0 3

∣∣∣∣∣∣∣∣0 3
2 1

∣∣∣∣ −
∣∣∣∣−1 3

2 1

∣∣∣∣ ∣∣∣∣−1 0
2 2

∣∣∣∣

 =

−1 −2 6
9 −1 3
−6 7 −2

 .

(ii) adj(A) = C t =

−1 9 −6
−2 −1 7
6 3 −2

.
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Example continued

(iii) A · adj(A) =

−1 0 3
2 2 1
0 3 1

 ·
−1 9 −6
−2 −1 7
6 3 −2

 =

19 0 0
0 19 0
0 0 19

 .
This tells us |A| = 19. Check:

|A| = −1 ·
∣∣∣∣2 1
3 1

∣∣∣∣+ 3 ·
∣∣∣∣2 2
0 3

∣∣∣∣ = 1 + 18 = 19.

(iv) A−1 = 1
|A| · adj(A) = 1

19 ·

−1 9 −6
−2 −1 7
6 3 −2

 =

− 1
19

9
19 − 6

19
− 2

19 − 1
19

7
19

6
19

3
19 − 2

19

.
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Cramer’s Rule

Theorem. Let A be an invertible n × n matrix and let A · X = B be the
matrix equation associated to a system of n equations in n unknowns.
Let Ai denote the matrix obtained by replacing the i column of A with B.
Then:

x1 =
|A1|
|A|

, x2 =
|A2|
|A|

, . . . , xn =
|An|
|A|

.
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Example

Use Cramer’s rule to find x1 in the system of equations:

5x1 + x2 − x3 = 4

9x1 + x2 − x3 = 1

x1 − x2 + 5x3 = 2

.

|A1| =

∣∣∣∣∣∣
4 1 −1
1 1 −1
2 −1 5

∣∣∣∣∣∣ = 4·
∣∣∣∣ 1 −1
−1 5

∣∣∣∣−∣∣∣∣1 −1
2 5

∣∣∣∣−∣∣∣∣1 1
2 −1

∣∣∣∣ = 16−7+3 = 12.

|A| =

∣∣∣∣∣∣
5 1 −1
9 1 −1
1 −1 5

∣∣∣∣∣∣ = 5

∣∣∣∣ 1 −1
−1 5

∣∣∣∣−∣∣∣∣9 −1
1 5

∣∣∣∣−∣∣∣∣9 1
1 −1

∣∣∣∣ = 20−46+10 = −16.

Thus, x1 = |A1|
|A| = 12

−16 = − 3
4 .
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Class Example

For the example above, use Cramers Rule to find x2.

Solution: x2 = |A2|
|A| ,

|A2| =

∣∣∣∣∣∣
5 4 −1
9 1 −1
1 2 5

∣∣∣∣∣∣ = 5

∣∣∣∣1 −1
2 5

∣∣∣∣−4

∣∣∣∣9 −1
1 5

∣∣∣∣−∣∣∣∣9 1
1 2

∣∣∣∣ = 35−4·46−17 = −166

From above: |A| = −16.Therefore, x2 = −166
−16 = 83

8 .
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Eigenvectors and Eigenvalues for 2× 2 matrices

Let A be a 2× 2 matrix. The real number λ is called an eigenvalue of A
if there exists a non-zero vector v ∈ R2 such that Av = λv .

The vector v is called an eigenvector of A associated to λ or a
λ-eigenvector.

Example: Let A =

[
3 5
1 −1

]
, v =

[
5
1

]
. Then

A · v =

[
3 5
1 −1

]
·
[

5
1

]
=

[
20
4

]
= 4 ·

[
5
1

]
= 4 · v ,

so 4 is an eigenvalue of A with eigenvector v .

Lecture 10: Determinants, Inverses, and Eigenvalues



Class Example

For the matrix A =

[
3 5
1 −1

]
, verify that -2 is an eigenvalue with

associated eigenvector

[
1
−1

]
.

Solution: [
3 5
1 −1

]
·
[

1
−1

]
=

[
−2
2

]
= −2 ·

[
1
−1

]
.
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Comment

If λ is an eigenvalue for the 2× 2 matrix A =

[
a b
c d

]
with eigenvector v ,

then Av = λv .

On the other hand, λv = (λI2) · v =

[
λ 0
0 λ

]
· v

Thus, Av = (λI2)v , so (λI2 − A)v = 0.

Therefore, the homogeneous system of equations

(λI2 − A)X =

[
λ− a −b
−c λ− d

]
· X = 0

has a non-trivial solution.

Consequently: If λ is an eigenvalue of A with eigenvector v , then:

(i) det(λI2 − A) = det(

[
λ− a −b
−c λ− d

]
) = 0.

(ii) v is in the nullspace of (λI2 − A).
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Example Revisited

Find the eigenvalues of A =

[
3 5
1 −1

]
.

To find the eigenvalues of A =

[
3 5
1 −1

]
, we need λ such that

det(λI2 − A)| = 0. In other words, we want

det(

[
λ 0
0 λ

]
−
[

3 5
1 −1

]
) =

∣∣∣∣λ− 3 −5
−1 λ+ 1

∣∣∣∣ = (λ− 3)(λ+ 1)− 5 = 0.

So, we must solve the quadratic equation

(λ− 3)(λ+ 1)− 5 = λ2 − 2λ− 8 = 0.

Since λ2−2λ−8 = (λ−4)(λ+ 2), we get λ = 4 or λ = −2, as expected.
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Example Revisited

An eigenvector for 4 is in the nullspace of (4I2 − A) and an eigenvector
for -2 is in the nullspace of (−2I2 − A).

If we apply EROs to 4I2 − A we get[
4− 3 −5
−1 4 + 1

]
=

[
1 −5
−1 5

]
−1·R1+R2−−−−−−→

[
1 −5
0 0

]
,

from which we see that the nullspace of 4I2 − A has

[
5
1

]
as a basic

solution, which means that

[
5
1

]
is a 4-eigenvector.

Similarly, −2I2 − A =

[
−2− 3 −5
−1 −2 + 1

]
=

[
−5 −5
−1 −1

]
reduces to[

−5 −5
0 0

]
which has nullspace generated by

[
1
−1

]
, the expected

eigenvector for -2.
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Example

Find the eigenvectors and eigenvalues for A =

[
0 −6
1 5

]
.

Solution: Set det(λI2 − A) =

∣∣∣∣λ− 0 6
−1 λ− 5

∣∣∣∣ = 0. Thus,

λ(λ− 5) + 6 = λ2 − 5λ+ 6 = 0.

Therefore λ = 2 and λ = 3 are the eigenvalues of A.
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Example continued

To find an eigenvector for 2 we need the nullspace of

(2I2 − A) =

[
2 6
−1 −3

]
.

Using EROs:[
2 6
−1 −3

]
1
2 ·R2−−−→

[
1 3
−1 −3

]
−1·R1+R2−−−−−−→

[
1 3
0 0

]
,

from which we see that the nullspace is generated by

[
3
−1

]
.

In other words,

[
3
−1

]
is a 2-eigenvector of A.

In fact, all of the vectors s ·
[

3
−1

]
, with s ∈ R are 2-eigenvectors of A.
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Example continued

To find an eigenvector for 3 we need the nullspace of

(3I2 − A) =

[
3 6
−1 −2

]
.

Using EROs:[
3 6
−1 −2

]
1
3 ·R2−−−→

[
1 2
−1 −2

]
−1·R1+R2−−−−−−→

[
1 2
0 0

]
,

from which we see that the nullspace is generated by

[
2
−1

]
.

In other words,

[
2
−1

]
is a 3-eigenvector of A.

In fact, all of the vectors r ·
[

2
−1

]
, with 3 ∈ R are 2-eigenvectors of A.
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Example continued

Where we are headed:. Form a 2× 2 matrix using the eigenvectors as

columns, P =

[
3 2
−1 −1

]
. Then P−1 =

[
1 2
−1 −3

]
. Moreover,

P−1AP =

[
1 2
−1 −3

]
·
[

0 −6
1 5

]
·
[

3 2
−1 −1

]
=

[
1 2
−1 −3

]
·
[

6 6
−2 −3

]
=

[
2 0
0 3

]
.

Thus, P−1AP is a diagonal matrix with the eigenvalues of A down its
main diagonal.

In this case we say that A is diagonalizable.

Eigenvalues and eigenvectors play a central role in diagonalizing square
matrices.
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Example

Here’s an application: Suppose A is diagonalizable. Then P−1AP = D,

where D =

[
λ1 0
0 λ2

]
. Thus, A = PDP−1.

(i) A2 = PDP−1 · PDP−1 = PD2P−1.

(ii) A3 = A2 · A = PD2P−1 · PDP−1 = PD3P−1.

(iii) Continuing, An = PDnP−1, for all n.

From the previous example, A =

[
0 −6
1 5

]
, P =

[
3 2
−1 −1

]
,

P−1 =

[
1 2
−1 −3

]
, D =

[
2 0
0 3

]
. So

An =

[
1 2
−1 −3

]
·
[

2 0
0 3

]n
·
[

3 2
−1 −1

]
=

[
1 2
−1 −3

]
·
[

2n 0
0 3n

]
·
[

3 2
−1 −1

]

=

[
1 2
−1 −3

]
·
[

3 · 2n 2n+1

−3n −3n

]
=

[
3 · 2n − 2 · 3n 2n+1 − 2 · 3n

−3 · 2n + 3n+1 −2n+1 + 3n+1

]
.
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