Exam 2 Review

0. Calculating determinants. Know various methods for calculating determinants. E.g., row or column expansion, and elementary row or column operations.

1. Eigenvalues, eigenvectors, and diagonalizability of square matrices. Let A be an $n \times n$ matrix.

- (i) The real number λ is an eigenvalue of A is there exists a non-zero vector v ∈ ℝⁿ such that Av = λv. In this case, v is an eigenvector associate to λ.
- (ii) The eigenvalues of A are the roots of $c_A(x)$, the *characteristic* polynomial of A. $c_A(x) = det[xI_n A]$.
- (iii) For a given eigenvalue λ, the λ-eigenvectors are the non-zero zero vectors in the null space of the matrix λI_n A. The basic solutions in this null space are **basic** λ-eigenvectors and form a **basis** for the eigenspace E_λ.
- (iv) If A is an $n \times n$ matrix, then, by definition, A is **diagonalizable** if there exists an invertible matrix P such that $P^{-1}AP = D$, where D is an $n \times n$ diagonal matrix.

- (v) If A is diagonalizable, the diagonal entries of the matrix D in (iv) are the eigenvalues of A.
- (vi) Suppose $c_A(x) = (x \lambda_1)^{e_1} \cdots (x \lambda_r)^{e_r}$, then the eigenvalue λ_i has multiplicity e_i .
- (vii) A is diagonalizable if and only if $c_A(x) = (x \lambda_1)^{e_1} \cdots (x \lambda_r)^{e_r}$ and for each eigenvalue λ_i , e_i equals the dimension of E_{λ_i} .

In particular: A is diagonalizable if A has n distinct eigenvalues.

(viii) If A is diagonalizable, then the diagonalizing matrix P is obtained by taking the matrix whose columns are the collection of basic eigenvectors derived from A.

2. Applications of diagonalizability of square matrices. Suppose A is diagonalizable, with $P^{-1}AP = D$.

(i) $A = PDP^{-1}$, and therefore $A^n = PD^nP^{-1}$, for all $n \ge 1$.

- (ii) For any square matrix *B*, e^B is the matrix given by the Taylor Series: $\sum_{n=0}^{\infty} \frac{1}{n!} B^n.$
- (iii) If $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$, then $e^D = \text{diag}(e^{\lambda_1}, \ldots, e^{\lambda_n})$.
- (iv) For A diagonalizable, $e^A = P e^D P^{-1}$.

(v) Solving recurrence relations: A sequence of non-negative numbers a₀, a₁, a₂,..., a_k,..., is called a linear recursion sequence of length two if there are fixed integers α, β, c, d such that:

(i)
$$a_0 = \alpha$$
.
(ii) $a_1 = \beta$.
(iii) $a_{k+2} = c \cdot a_k + d \cdot a_{k+1}$, for all $k \ge 0$.

To find a closed form solution for a_k , let $v_k = \begin{vmatrix} a_k \\ a_{k+1} \end{vmatrix}$, and

 $A = \begin{bmatrix} 0 & 1 \\ c & d \end{bmatrix}$. Then $v_k = A^k \cdot v_0$, and a_k is the first coordinate of the vector v_k .

(vi) Solving systems of first order linear differential equations: Let $A = (a_{ij})$, be an $n \times n$ matrix. A system of first order linear differential equations is a system of equations of the form:

$$\begin{aligned} x_1'(t) &= a_{11}x_1(t) + \dots + a_{1n}x_n(t) \\ x_2'(t) &= a_{21}x_1(t) + \dots + a_{2n}x_n(t) \\ \vdots &= \vdots \\ x_n'(t) &= a_{n1}x_1(t) + \dots + a_{nn}x_n(t), \end{aligned}$$

where $x_i(t)$ is a real valued function of t. The numbers $x_1(0), \dots, x_n(0)$ are called the *initial conditions* of the system.

In matrix form, the system is given by the equation: $X'(t) = A \cdot X(t)$, where $X(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$ and $X'(t) = \begin{bmatrix} x'_1(t) \\ \vdots \\ x'_n(t) \end{bmatrix}$.

The solution to the system is given by: $X(t) = e^{At} \cdot X(0)$.

3. Spanning sets, linear independence and bases in Euclidean space. Let v₁,..., v_r, w be columns vectors in ℝⁿ. Let A = [v₁ v₂ ··· v_r]. Then:
(i) w belongs to span{v₁,..., v_r} if and only if the system of equations A · X = w has a solution.
(ii) If [λ₁] is a solution to A · X = w, then w = λ₁v₁ + ··· + λ_rv_r.

(iii) v_1, \ldots, v_r are linearly independent if and only if $A \cdot X = \mathbf{0}$ has only the zero solution.

(iv) If
$$v_1, \ldots, v_r$$
 are **not** linearly independent and $\begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$ is a non-zero

solution to $A \cdot X = 0$, then

$$(*) \quad \lambda_1 v_1 + \cdots + \lambda_r v_r = \mathbf{0}.$$

This means the vectors v_1, \ldots, v_r are linearly dependent, and thus redundant.

 (v) One can use (*) to write some v_i in terms of the remaining v's. Upon doing so:

```
\operatorname{span}\{v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_r\}=\operatorname{span}\{v_1,\ldots,v_r\}.
```

(vi) One may continue to eliminate redundant vectors from among the v_i 's.

As soon as one one arrives at a linearly independent subset of v_1, \ldots, v_r , this set of vectors forms a basis for the original subspace span $\{v_1, \ldots, v_r\}$.

The number of elements in the basis is then the dimension of span $\{v_1, \ldots, v_r\}$.

(vii) To test if the *n* vectors v_1, \ldots, v_n in \mathbb{R}^n are linearly independent, or span \mathbb{R}^n , or form a basis for \mathbb{R}^n , it suffices to show that $\det[v_1 \ v_2 \ \cdots \ v_n] \neq 0$.