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0. Calculating determinants. Know various methods for calculating
determinants. E.g., row or column expansion, and elementary row or
column operations.

1. Eigenvalues, eigenvectors, and diagonalizability of square matrices.
Let A be an n × n matrix.

(i) The real number λ is an eigenvalue of A is there exists a non-zero
vector v ∈ Rn such that Av = λv . In this case, v is an eigenvector
associate to λ.

(ii) The eigenvalues of A are the roots of cA(x), the characteristic
polynomial of A. cA(x) = det[xIn − A].

(iii) For a given eigenvalue λ, the λ-eigenvectors are the non-zero zero
vectors in the null space of the matrix λIn − A. The basic solutions
in this null space are basic λ-eigenvectors and form a basis for the
eigenspace Eλ.

(iv) If A is an n × n matrix, then, by definition, A is diagonalizable if
there exists an invertible matrix P such that P−1AP = D, where D
is an n × n diagonal matrix.
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(v) If A is diagonalizable, the diagonal entries of the matrix D in (iv) are
the eigenvalues of A.

(vi) Suppose cA(x) = (x − λ1)e1 · · · (x − λr )er , then the eigenvalue λi
has multiplicity ei .

(vii) A is diagonalizable if and only if cA(x) = (x − λ1)e1 · · · (x − λr )er
and for each eigenvalue λi , ei equals the dimension of Eλi .

In particular: A is diagonalizable if A has n distinct eigenvalues.

(viii) If A is diagonalizable, then the diagonalizing matrix P is obtained by
taking the matrix whose columns are the collection of basic
eigenvectors derived from A.
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2. Applications of diagonalizability of square matrices. Suppose A is
diagonalizable, with P−1AP = D.

(i) A = PDP−1, and therefore An = PDnP−1, for all n ≥ 1.

(ii) For any square matrix B, eB is the matrix given by the Taylor Series:∑∞
n=0

1
n!B

n.

(iii) If D = diag(λ1, . . . , λn), then eD = diag(eλ1 , . . . , eλn).

(iv) For A diagonalizable, eA = PeDP−1.
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(v) Solving recurrence relations: A sequence of non-negative numbers
a0, a1, a2, . . . , ak , . . . , is called a linear recursion sequence of
length two if there are fixed integers α, β, c , d such that:

(i) a0 = α.
(ii) a1 = β.
(iii) ak+2 = c · ak + d · ak+1, for all k ≥ 0.

To find a closed form solution for ak , let vk =

[
ak
ak+1

]
, and

A =

[
0 1
c d

]
. Then vk = Ak · v0, and ak is the first coordinate of the

vector vk .
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(vi) Solving systems of first order linear differential equations: Let
A = (aij), be an n × n matrix. A system of first order linear
differential equations is a system of equations of the form:

x ′1(t) = a11x1(t) + · · ·+ a1nxn(t)

x ′2(t) = a21x1(t) + · · ·+ a2nxn(t)

... =
...

x ′n(t) = an1x1(t) + · · ·+ annxn(t),

where xi (t) is a real valued function of t. The numbers
x1(0), · · · , xn(0) are called the initial conditions of the system.
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In matrix form, the system is given by the equation: X′(t) = A · X(t),

where X(t) =

x1(t)
...

xn(t)

 and X′(t) =

x
′
1(t)
...

x ′n(t)

.

The solution to the system is given by: X(t) = eAt · X(0).
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3. Spanning sets, linear independence and bases in Euclidean space. Let
v1, . . . , vr ,w be columns vectors in Rn. Let A = [v1 v2 · · · vr ]. Then:

(i) w belongs to span{v1, . . . , vr} if and only if the system of equations
A · X = w has a solution.

(ii) If

λ1...
λn

 is a solution to A · X = w , then w = λ1v1 + · · ·+ λrvr .

(iii) v1, . . . , vr are linearly independent if and only if A · X = 0 has only
the zero solution.

(iv) If v1, . . . , vr are not linearly independent and

λ1...
λn

 is a non-zero

solution to A · X = 0, then

(∗) λ1v1 + · · ·λrvr = 0.

This means the vectors v1, . . . , vr are linearly dependent, and thus
redundant.
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(v) One can use (*) to write some vi in terms of the remaining v ’s.
Upon doing so:

span{v1, . . . , vi−1, vi+1, . . . , vr} = span{v1, . . . , vr}.

(vi) One may continue to eliminate redundant vectors from among the
vi ’s.

As soon as one one arrives at a linearly independent subset of
v1, . . . , vr , this set of vectors forms a basis for the original subspace
span{v1, . . . , vr}.

The number of elements in the basis is then the dimension of
span{v1, . . . , vr}.

(vii) To test if the n vectors v1, . . . , vn in Rn are linearly independent, or
span Rn, or form a basis for Rn, it suffices to show that
det[v1 v2 · · · vn] 6= 0.
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