April 8: Triple Integrals via Spherical and Cylindrical Coordinates

Examples of Triple Integrals using Spherical Coordinates

Example 1. Let's begin as we did with polar coordinates. We want a 3-dimensional analogue of integrating over a circle. So we integrate over B, the solid sphere of radius R to calculate its volume.

To calculate $\iiint_{B} d V$, we make the following substitutions:
(i) $x=\rho \sin (\phi) \cos (\theta), y=\rho \sin (\phi) \sin (\theta), z=\rho \cos (\phi)$
(ii) $d V=\rho^{2} \sin (\phi) d \rho, d \phi, d \theta, \quad 0 \leq \rho \leq 1,0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi$.

We get:

$$
\begin{aligned}
\operatorname{vol}(B) & =\iiint_{B} d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R} \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& =\frac{2 \pi R^{3}}{3} \int_{0}^{\pi} \sin (\phi) d \phi \\
& =\frac{4 \pi R^{3}}{3}
\end{aligned}
$$

Examples of Triple Integrals using Spherical Coordinates

One reason this works:The points described above lie on the sphere of radius ρ.

$$
\begin{aligned}
& x^{2}=\rho^{2} \sin ^{2}(\phi) \cos ^{2}(\theta), \quad y^{2}=\rho^{2} \sin ^{2}(\phi) \sin ^{2}(\theta), z^{2}=\rho^{2} \cos ^{2}(\phi) . \\
& x^{2}+y^{2}+z^{2}=\rho^{2}\left\{\sin ^{2}(\phi) \cos ^{2}(\theta)+\sin ^{2}(\phi) \sin ^{2}(\theta)+\cos ^{2}(\phi)\right\} \\
& =\rho^{2}\left\{\sin ^{2}(\phi)\left(\cos ^{2}(\theta)+\sin ^{2}(\theta)\right)+\cos ^{2}(\phi)\right\} \\
& =\rho^{2}\left\{\sin ^{2}(\phi)+\cos ^{2}(\phi)\right\} \\
& =\rho^{2} \text {. }
\end{aligned}
$$

Later we will see the $\rho^{2} \sin (\phi) d \rho d \phi d \theta$ is the volume of a spherical cube.
Which means we can replace $d V$ in a Riemann sum by $\rho^{2} \sin (\phi) d \rho d \phi d \theta$.

Examples of Triple Integrals using Spherical Coordinates

Here's the example from the end of Monday's class.
Example 2. Find the average value of $\sqrt{x^{2}+y^{2}+z^{2}}$ on the unit sphere B centered at the origin. We make the corresponding spherical substitutions.

Solution.

$$
\begin{gathered}
\text { Average Value }=\frac{1}{\operatorname{vol}(B)} \iiint_{B} \sqrt{x^{2}+y^{2}+z^{2}} d V= \\
\frac{3}{4 \pi} \iiint_{B} \sqrt{\rho^{2} \sin ^{2}(\phi) \cos ^{2}(\theta)+\rho^{2} \sin ^{2}(\phi) \sin ^{2}(\theta)+\rho^{2} \cos ^{2}(\phi)} \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
=\frac{3}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{3} \sin (\phi) d \rho d \phi d \theta \\
=\frac{3}{4 \pi} \cdot \frac{2 \pi}{4} \int_{0}^{\pi} \sin (\phi) d \phi \\
=\frac{3}{4 \pi} \cdot \frac{2 \pi}{4} \cdot 2=\frac{3}{4}
\end{gathered}
$$

Spherical Coordinates

Every point in \mathbb{R}^{3} lies on a sphere of radius ρ centered at $(0,0,0)$ and thus can be expressed in terms of spherical coordinates.

Here is typical point P using spherical coordinates

Note: $P=(\rho, \phi, \theta)$, with $0 \leq \phi \leq \pi$ and $0 \leq \theta \leq 2 \pi$.

Spherical Coordinates

If we set a spherical coordinate equal to a constant, we get:

$\rho=R$
Sphere of radius R

$$
\theta=\theta_{0}
$$

Vertical half-plane

$$
\phi=\phi_{0}
$$

Right-circular cone

Spherical Coordinates

Here is the relation between the spherical coordinates and the rectangular coordinates of P.

Note:

$$
x=r \cos (\theta)=\rho \sin (\phi) \cos (\theta), y=r \sin (\theta)=\rho \sin (\phi) \cos (\theta), z=\rho \cos (\phi)
$$

Spherical Coordinates

Writing spherical coordinates in terms of rectangular coordinates.

$$
\begin{aligned}
& \rho=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \tan (\theta)=\frac{y}{x}, \text { so } \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \cos (\phi)=\frac{z}{\rho}, \text { so } \phi=\cos ^{-1}\left(\frac{z}{\rho}\right)
\end{aligned}
$$

Spherical Coordinates

Class Example A. Find the rectangular coordinates of the point $P=(\rho, \phi, \theta)=\left(3, \frac{\pi}{3}, \frac{\pi}{4}\right)$.

Solution

$$
\begin{aligned}
& x=3 \sin \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{4}\right)=3 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}=\frac{3 \sqrt{6}}{4} \\
& y=3 \sin \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{4}\right)=3 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}=\frac{3 \sqrt{6}}{4} \\
& z=3 \cos \left(\frac{\pi}{3}\right)=3 \cdot \frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

Spherical Coordinates

Example 3. Find the spherical coordinates of the point $P=(x, y, z)=(-1,1, \sqrt{6})$.
Solution. $\rho=\sqrt{(-1)^{2}+1^{2}+(\sqrt{6})^{2}}=\sqrt{8}=2 \sqrt{2}$.
From $z=\rho \cos (\phi)$ we have $\sqrt{6}=2 \sqrt{2} \cos (\phi)$. Thus:
$\cos (\phi)=\frac{\sqrt{6}}{2 \sqrt{2}}=\frac{\sqrt{3}}{2} . \phi=\frac{\pi}{6}$.
$\theta=\tan ^{-1}\left(\frac{-1}{1}\right)=\tan ^{-1}(-1)=\frac{3 \pi}{4}$, since $(x, y)=(-1,1)$.
Thus, in spherical coordinates, $P=\left(2 \sqrt{2}, \frac{\pi}{6}, \frac{3 \pi}{4}\right)$.

Spherical Coordinates

Fubini's Theorem for Triple Integrals Using Spherical Coordinates

THEOREM 3 Triple Integrals in Spherical Coordinates For a region \mathcal{W} defined by

$$
\theta_{1} \leq \theta \leq \theta_{2}, \quad \phi_{1} \leq \phi \leq \phi_{2}, \quad \rho_{1}(\theta, \phi) \leq \rho \leq \rho_{2}(\theta, \phi)
$$

the triple integral $\iiint_{\mathcal{W}} f(x, y, z) d V$ is equal to

$$
\int_{\theta_{1}}^{\theta_{2}} \int_{\phi=\phi_{1}}^{\phi_{2}} \int_{\rho=\rho_{1}(\theta, \phi)}^{\rho_{2}(\theta, \phi)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

Examples of Triple Integrals using Spherical Coordinates

Example 4. Calculate the volume of the solid B bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $z=z^{2}+y^{2}+z^{2}$.

For the sphere:

$$
\rho \cos (\phi)=z=x^{2}+y^{2}+x^{2}=\rho^{2}
$$

So $\rho=\cos (\phi)$.

Examples of Triple Integrals using Spherical Coordinates

The cone:

$$
\begin{aligned}
\rho \cos (\phi) & =\sqrt{(\rho \sin (\phi) \cos (\theta))^{2}+(\rho \sin (\phi) \sin (\theta))^{2}} \\
& =\rho \sin (\phi),
\end{aligned}
$$

Where the cone and sphere meet: $\rho \cos (\phi)=\rho \sin (\phi)$ so: $\cos (\phi)=\sin (\phi)$.
Therefore: $\phi=\frac{\pi}{4}$. θ varies from 0 to 2π.

ρ varies from 0 to $\cos \phi$ while ϕ and θ are constant.

ϕ varies from 0 to $\pi / 4$ while θ is constant.

θ varies from 0 to 2π.

$$
\begin{aligned}
\operatorname{vol}(B) & =\iiint_{B} d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\cos (\phi)} \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& =\frac{1}{3} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \cos ^{3}(\phi) \sin (\phi) d \phi d \theta \\
& =\frac{1}{3} \int_{0}^{2 \pi}-\left.\frac{\cos ^{4}(\phi)}{4}\right|_{0} ^{\phi=\frac{\pi}{4}} d \theta \\
& =\frac{1}{12} \int_{0}^{2 \pi}\left\{-\left(\frac{\sqrt{2}}{2}\right)^{4}+1\right\} d \theta \\
& =\frac{2 \pi}{12}\left\{-\left(\frac{\sqrt{2}}{2}\right)^{4}+1\right\} \\
& =\frac{\pi}{8}
\end{aligned}
$$

Spherical Coordinates

Why is $d V \approx \rho^{2} \sin (\phi) d \rho d \phi d \theta$?
We can use the small spherical wedge in the Riemann sums:

Recall that $r=\rho \sin (\phi)$. The missing edge is approximately $\rho \Delta \phi$. The volume of the wedge is approximately:

$$
(\rho \sin (\phi) \Delta \theta) \cdot(\Delta \rho) \cdot(\rho \Delta \phi)=\rho^{2} \sin (\phi) \Delta \rho \Delta \phi \Delta \theta
$$

Examples of Triple Integrals using Spherical Coordinates

Example 5. Calculate $\iiint_{B} e^{-\sqrt{x^{2}+y^{2}+z^{2}}} d V$, where B is that portion of the solid sphere of radius R in the first octant.

In polar coordinates, B is determined by the inequalities: $0 \leq \rho \leq R$, $0 \leq \phi \leq \frac{\pi}{2}, 0 \leq \theta \leq \frac{\pi}{2}$.

$$
\begin{aligned}
\iiint_{B} e^{-\sqrt{x^{2}+y^{2}+z^{2}}} d V & =\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{R} e^{-\rho} \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& =\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \int_{0}^{R} e^{-\rho} \rho^{2} \sin (\phi) d \rho d \phi \\
& =\frac{\pi}{2} \int_{0}^{R} e^{-\rho} \rho^{2} d \rho \\
& =\frac{\pi}{2}\left\{\left(-\rho^{2}-2 \rho-2\right) e^{\rho}\right\}_{0}^{R} \\
& =\frac{\pi}{2}\left\{\left(-R^{2}-2 R-2\right) e^{-R}+2\right\}
\end{aligned}
$$

Cylindrical Coordinates

Cylindrical coordinates are essentially like polar coordinates, though with the extra variable z.

To transform a triple integral into cylindrical coordinates, we set:

$$
x=r \cos (\theta), \quad y=r \sin (\theta), \quad z=z, \quad d V=r d z d r d \theta
$$

In cylindrical coordinates $P=(r, \theta, z)$.

Cylindrical Coordinates

We can easily guess what the volume of a cylindrical wedge should be.
Solution: It should be approximately the area of the corresponding polar rectangle times change in the z direction (height).

$$
d V \approx \operatorname{area}(D) \cdot \Delta z=(r \Delta r \Delta \theta) \cdot \Delta z=r d r d \theta d z
$$

Cylindrical Coordinates

Here is a version of Fubini's Theorem for cylindrical coordinates.

THEOREM 2 Triple Integrals in Cylindrical Coordinates For a continuous funct f on the region

$$
\theta_{1} \leq \theta \leq \theta_{2}, \quad r_{1}(\theta) \leq r \leq r_{2}(\theta), \quad z_{1}(r, \theta) \leq z \leq z_{2}(r, \theta)
$$

the triple integral $\iiint_{\mathcal{W}} f(x, y, z) d V$ is equal to

$$
\int_{\theta_{1}}^{\theta_{2}} \int_{r=r_{1}(\theta)}^{r_{2}(\theta)} \int_{z=z_{1}(r, \theta)}^{z_{2}(r, \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

Examples of Triple Integrals using Cylindircal Coordinates

Example 6. Integrate $z \sqrt{x^{2}+y^{2}}$ over the cylinder B :

In polar coordinates $B: 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi, 1 \leq z \leq 5$.

$$
\begin{aligned}
\iiint_{B} z \sqrt{x^{2}+y^{2}} & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{1}^{5} z \sqrt{(r \cos (\theta))^{2}+(r \sin (\theta))^{2}} r d z d r d \theta \\
& =\int_{1}^{5} \int_{0}^{2 \pi} \int_{0}^{2} z r^{2} d r d \theta d z \\
& =2 \pi \int_{1}^{5} \int_{0}^{2} z r^{2} d r d z \\
& =2 \pi \int_{1}^{5} z\left(\frac{2^{3}}{3}-0\right) d z \\
& =\frac{16 \pi}{3} \int_{1}^{5} z d z \\
& =\frac{16 \pi}{3}\left\{\frac{5^{2}}{2}-\frac{1}{2}\right\} \\
& =64 \pi
\end{aligned}
$$

Examples of Triple Integrals using Cylindircal Coordinates

Example 7. Calculate $\iiint_{W} z d V$ for $W: 0 \leq x^{2}+y^{2} \leq w$ and $0 \leq y \leq z$.

To describe W is cylindrical coordinates: $0 \leq z \leq y$, so

$$
0 \leq z \leq r \sin (\theta)
$$

Examples of Triple Integrals using Cylindircal Coordinates

Since $y \geq 0$, the project of W onto the $x y$-plane is the semi-circle D. Thus, $0 \leq r \leq 2$ and $0 \leq \theta \leq \pi$.

$$
\begin{aligned}
\iiint_{W} z d V & =\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{r \sin (\theta)} z r d z d r d \theta \\
& =\frac{1}{2} \int_{0}^{\pi} \int_{0}^{2} r^{3} \sin ^{2}(\theta) d r d \theta \\
& =\frac{1}{2} \int_{0}^{\pi} \frac{16}{4} \sin ^{2}(\theta) d \theta \\
& =2 \int_{0}^{\pi} \frac{1}{2}-\frac{1}{2} \cos (2 \theta) d \theta \\
& =2\left\{\frac{\theta}{2}-\frac{1}{4} \sin (\theta)\right\}_{0}^{\pi} \\
& =2 \pi
\end{aligned}
$$

